Answer:
The concentration is 0,2925M
Explanation:
We use the formula
C initial x V initial = C final x V final
11,7 M x 25 ml = C final x 1000 ml
C final= (11,7 M x 25 ml)/1000 ml = 0, 2925 M
(This formula applies to liquid solutions)
The correct answer is 1. Lose electrons and become positive ions.
I hope my answer was beneficial to you! c:
250 kJ/87.9 KJ per mole Cl2 * 71g/mole= 202 g It is D for plato users
The equilibrium constant of a reaction is defined as:
"The ratio between equilibrium concentrations of products powered to their reaction quotient and equilibrium concentration of reactants powered to thier reaction quotient".
The reaction quotient, Q, has the same algebraic expressions but use the actual concentrations of reactants.
To solve this question we need this additional information:
<em>For this reaction, K = 6.0x10⁻² and the initial concentrations of the reactants are:</em>
<em>[N₂] = 4.0M; [NH₃] = 1.0x10⁻⁴M and [H₂] = 1.0x10⁻²M</em>
<em />
Thus, for the reaction:
N₂ + 3H₂ ⇄ 2NH₃
The equilibrium constant, K, of this reaction, is defined as:
![K = 6.0x10^{-2} = \frac{[NH_3]^2}{[N_2][H_2]^3}](https://tex.z-dn.net/?f=K%20%3D%206.0x10%5E%7B-2%7D%20%3D%20%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5BH_2%5D%5E3%7D)
And Q, is:
![Q = \frac{[NH_3]^2}{[N_2][H_2]^3}](https://tex.z-dn.net/?f=Q%20%3D%20%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5BH_2%5D%5E3%7D)
Where actual concentrations are:
[NH₃] = 1.0x10⁻⁴M
[N₂] = 4.0M
[H₂] = 2.5x10⁻¹M
Replacing:
![Q = \frac{[1.0x10^{-4}]^2}{[4.0][2.5x10^{-1}]^3}](https://tex.z-dn.net/?f=Q%20%3D%20%5Cfrac%7B%5B1.0x10%5E%7B-4%7D%5D%5E2%7D%7B%5B4.0%5D%5B2.5x10%5E%7B-1%7D%5D%5E3%7D)
<h3>Q = 1.6x10⁻⁷</h3>
As Q < K,
<h3>The chemical system will shift to the right in order to produce more NH₃</h3>
Learn more about chemical equililbrium in:
brainly.com/question/24301138
Answer:
Temperature affects Seismic Wave speed.
Explanation:
Both temperature and pressure affect the speed of Seismic waves. The Speed of Seismic waves increases uniformly as pressure increases, meaning that as depth increases, pressure also increases which causes Seismic Wave speeds to increase as well. This can be calculated and the data can be gathered. Temperature on the other hand decreases the speed of Seismic Waves, therefore we can calculate the difference of speed between what the Seismic Wave should be at a certain pressure with the actual speed gathered. This difference in speed will allow us to determine the actual temperature at that level.