Answer: 
Explanation:

cM 0 0
So dissociation constant will be:

Given: c = 0.15 M
pH = 1.86
= ?
Putting in the values we get:
Also ![pH=-log[H^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D)
![1.86=-log[H^+]](https://tex.z-dn.net/?f=1.86%3D-log%5BH%5E%2B%5D)
![[H^+]=0.01](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.01)
![[H^+]=c\times \alpha](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dc%5Ctimes%20%5Calpha)


As ![[H^+]=[ClCH_2COO^-]=0.01](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D%5BClCH_2COO%5E-%5D%3D0.01)

![K_a=1.67\times 10^{-3]](https://tex.z-dn.net/?f=K_a%3D1.67%5Ctimes%2010%5E%7B-3%5D)
Thus the vale of
for the acid is 
There are several ways to visually represent compounds. For this particular organic compound, we can use the skeletal formula and the expanded formula. The skeletal makes use of lines to show which atoms are bonded to each other. The expanded formula shows the species of the atoms and their bonding with other atoms. I have attached the two representations.
<span>
• </span>Volume of the marshmallow:
V = 2.75 in^3 (but, 1 in^3 = 16.39 cm^3)
V = 2.75 × 16.39 cm^3
V = 2.75 × 16.39 cm^3
V = 45.0725 cm^3
• Density:
d = 0.242 g/cm^3
<span>• </span>Mass:
m = d × V
m = (0.242 g/cm^3) × (45.0725 cm^3)
m = (0.242 g/cm^3) × (45.0725 cm^3)
m = 10.907545 g
m ≈ 10.9 g <——<span>— this is the answer.
I hope this helps. =)
</span>
Salt crystals are shaped like cubes. Salt is part of the isometric crystal system.