Answer : The correct answer is option 2 : 0.10 M NaCl and 0.10 M NaClO₄
Explanation :
Solutions are classified into 3 categories.
1) Strong electrolytes : These are the solutions that dissociate completely forming ions . They are good conductors of electricity.
Example : All strong acids, bases and the salts made by strong acid/base are strong electrolytes .
2) Weak electrolytes : These substances do not dissociate completely thereby forming fewer ions. They are weak conductors of electricity.
3) Non electrolytes : These are the substances that do not dissociate at all. They do not form ions in aqueous medium. They are bad conductors of electricity.
Let us take a look at the given options and find out what type of solution do we have .
Option 1 : NH₃ is a weak electrolyte whereas NH₄Cl is a strong electrolyte bcause NH₄Cl is made by combination of NH₃ and HCl ( HCl is a strong acid)
Therefore NH₃ would carry electricity less efficiently than NH₄Cl.
Option 2 : Both NaCl and NaClO₄ are strong electrolytes. Therefore they will conduct electrical current equally well
Option 3 : NaNO₃ is a strong electrolyte but HNO₂ is a weak electrolyte. Therefore they will not carry the current equally
Therefore the correct option is option 2
Answer:
you need to send us the figure
Explanation:
Answer would be B. I provided work on an image attached. Message me if u have any other questions on how to do it
Answer:
3.7 mol Al2O3 x 4 mol Al = 7.4 mol Al 2 mol Al2O3
Explanation:
Answer is: a lower freezing point has solution of K₂SO₄.
Change in freezing
point from pure solvent to solution: ΔT =i · Kf · b.<span>
Kf - molal freezing-point depression constant for water is 1.86°C/m.
b - molality, moles of solute per
kilogram of solvent.
i - </span>Van't
Hoff factor.<span>
b(K</span>₂SO₄<span>) = 0.35 m.
</span>b(KCl) = 0.5 m.
i(K₂SO₄) = 3.
i(KCl) = 2.
ΔT(K₂SO₄) = 3 · 0.35 m · 1.86°C/m.
ΔT(K₂SO₄) = 1.953°C.
ΔT(KCl) = 2 · 0.5 m · 1.86°C/m.
ΔT(KCl) = 1.86°C.