Answer:
In none of the reactions ΔH°rxn equal to ΔH°f of the product.
Explanation:
The standard enthalpy of formation (ΔH°f) is the enthalpy change when 1 mole of a product is formed from its constituent elements in the standard states.
1/2 O₂(g) + H₂O(g) ⟶ H₂O₂(g)
ΔH°rxn is NOT equal to ΔH°f of the product because H₂O(g) is not an element but a compound.
Na⁺(g) + F⁻(g) ⟶ NaF(s)
ΔH°rxn is NOT equal to ΔH°f of the product because Na and F are not in their standard states (Na(s); F₂(g)).
K(g) + 1/2 Cl₂(g) ⟶ KCl(s)
ΔH°rxn is NOT equal to ΔH°f of the product because K is not in its standard state (K(s)).
O₂(g) + 2 N₂(g) ⟶ 2 N₂O(g)
ΔH°rxn is NOT equal to ΔH°f of the product because 2 moles of N₂O are formed.
In none of the above ΔHrxn equal to ΔHf of the product.
Answer:
Kb = 0.428 m/°C
Explanation:
To solve this problem we need to use the <em>boiling-point elevation formula</em>:
- <em>Tsolution</em> - <em>Tpure solvent</em> = Kb * m
Where <em>Tsolution</em> and <em>Tpure solvent</em> are the boiling point of the CS₂ solution (47.52 °C) and of pure CS₂ (46.3 °C), respectively. Kb is the constant asked by the problem, and m is the molality of the solution.
So in order to use that equation and solve for Kb, first we <em>calculate the molality of the solution</em>.
molality = mol solute / kg solvent
- Density of CS₂ = 1.26 g/cm³
- Mass of 410.0 mL of CS₂ ⇒ 410 cm³ * 1.26 g/cm³ = 516.6 g = 0.5166 kg
molality = 0.270 mol / 0.5166 kg = 0.5226 m
Now we <u>solve for Kb</u>:
<em>Tsolution</em> - <em>Tpure solvent</em> = Kb * m
- 47.52 °C - 46.3 °C = Kb * 0.5226 m
Answer:
A
Explanation:
Iron has the ground state electronic configuration [Ar]3d64s2
Fe2+ has the electronic configuration [Ar]3d6.
In an octahedral crystal field, there are two sets of degenerate orbitals; the lower lying three t2g orbitals, and the higher level two degenerate eg orbitals. Strong field ligands cause high octahedral crystal field splitting, there by separating the two sets of degenerate orbitals by a tremendous amount of energy. This energy is much greater than the pairing energy required to pair the six electrons in three degenerate orbitals. Since CN- is a strong field ligand, it leads to pairing of six electrons in three degenerate orbitals
The answer:
<span>The equation of its dissolution in water is: AgNO3 → Ag + (aq) + NO3- (aq)
and </span>AgNO3 → Ag + (aq) + NO3- (aq)
1 mol 1mol 1mol
? -------- 0.854mo
so for finding the value, it is sufficients to complute 1 x 0.854 mol =0.854 mol
so, 0.854 mol is required for the reaction to form 0.854 mol of Ag