273 Kelvin, 0 degrees Celsius, 32 degrees Fahrenheit
Answer:

Explanation:
Hello.
In this case, since no information about the reacting hydrogen is given, we can assume that it completely react with the 28.0 g of acetylene to yield ethane. In such a way, via the 1:1 mole ratio between acetylene (molar mass = 26 g/mol) and ethane (molar mass = 30 g/mol), we compute the yielded grams, or the theoretical yield of ethane as shown below:

Hence, by knowing that the percent yield is computed via the actual yield (24.5 g) over the theoretical yield, we obtain:

Best regards.
ΔS =S(products) -S(reactants)
Where ΔS is the change of entropy in a reactions
a. ΔS = (2) - (2+1) = -1
b. ΔS = (1+1) -(1) = 1
c. ΔS = (1+2) - (1) = 2
d. ΔS = (2) - (2+1) = -1
e. ΔS = (1) - (1) = 0
ΔS is negative for reaction a. and d.
Answer:
Final pressure = 2.3225 atm
Amontons’s law states that
At constant volume and number of molecules, the pressure of a given mass of gas is directly proportional to its temperature
Explanation:
Temperature causes increased excitement of gas molecules increasing the number of collisions with the walls of the container which is sensed as increase in pressure
Amontons’s law: P/T = Constant at constant V and n
That is P1/T1 = P2/T2
Where temperature is given in Kelvin
Hence T1 of 10°C = 273.15 + 10 = 283.15K
Also temperature T2 of 40°C = 313.15 K
Hence
P2 = (P1/T1)×T2 = (2.1/283.15)×313.15 = 2.3225 atm
Ferromagnesian silicate minerals (i looked it up)