4.4moles of oxygen atoms
Explanation:
Given parameters:
Mass of MgSO₄ = 132.2g
Unknown:
Number of moles of oxygen atoms = ?
Solution:
The number of moles is the quantity of substance that contains the avogadro's number of particles.
To solve for this;
Number of moles = 
Molar mass of MgSO₄ = 24 + 32 + 4(16) = 120g/mole
Number of moles =
= 1.1 moles
In
1 moles of MgSO₄ we have 4 moles of oxygen atoms
1.1 moles of MgSO₄ contains 4 x 1.1 moles = 4.4moles of oxygen atoms
learn more:
number of moles brainly.com/question/1841136
#learnwithBrainly
Answer:
104.84 moles
Explanation:
Given data:
Moles of Boron produced = ?
Mass of B₂O₃ = 3650 g
Solution:
Chemical equation:
6K + B₂O₃ → 3K₂O + 2B
Number of moles of B₂O₃:
Number of moles = mass/ molar mass
Number of moles = 3650 g/ 69.63 g/mol
Number of moles = 52.42 mol
Now we will compare the moles of B₂O₃ with B from balance chemical equation:
B₂O₃ : B
1 : 2
52.42 : 2×52.42 = 104.84
Thus from 3650 g of B₂O₃ 104.84 moles of boron will produced.
Answer : The enthalpy change for the reaction is, 201.9 kJ
Explanation :
According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
According to this law, the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation. That means the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.
The balanced reaction of
will be,

The intermediate balanced chemical reaction will be,
(1)

(2)

(3)

(4)

Now we will multiply the reaction 1 by 2, revere the reaction 2, reverse and half the reaction 3 and 4 then adding all the equations, we get :
(1)

(2)

(3)

(4)

The expression for enthalpy of the reaction will be,



Therefore, the enthalpy change for the reaction is, 201.9 kJ
A) 5.2 x 10^2
B) 86.
C) 6.4 x 10^3
D) 5.0
E) 22.
F) 0.89
Answer:
The equation for the rate of this reaction is R = [NO] + {O2}
Explanation:
The rate-determining step of a reaction is the slowest step of a chemical reaction which determines the rate (speed) at which the overall reaction would take place.
Reaction mechanism:
The slow and fast reactions both have NO3 which is cancelled out on both sides, in order to get the overall reaction.
The rate law for this reaction would be that for the rate determining step:
R = [NO] + {O2}