<span>We can use
the heat equation,
Q = mcΔT </span>
<span>Where Q is
the amount of energy transferred (J), m is the mass of the substance
(kg), c is
the specific heat (J g</span>⁻¹ °C⁻<span>¹) and ΔT is
the temperature difference (°C).</span>
Let's assume that the finale temperature is T.
Q = 1200 J
<span>
m = 36 g
c = 4.186 J/g °C</span>
ΔT = (T -
22)
By applying
the formula,
1200 J = 36 g
x 4.186 J/g °C x (T - 22)
(T - 22) = 1200 J / (36 g x 4.186 J/g °C)
(T - 22) = 7.96 °C
T = (7.96 + 22) °C = 29.96 °C
T = 30 °C
Hence,
the final temperature is 30 °C.
Carbonated drinks have the air under pressure so that carbon bubbles are forced into the drink, keeping it carbonated. So when you open a can, the air under pressure in the can comes out of the can at a high speed, making a "whooshing" sound. The gas law that applies to this concept is the Boyle's Law (PV=k or P1V1=P2V2).
Answer:
Density: Physical Property
Flammability: Chemical Property
Solubility In Water: Physical Property
Reactivity With Water: Chemical Property
Melting Pot: Physical Property
Color: Physical Property
Odor: Physical Property
Explanation:
:)
Answer:

Explanation:
Hello there!
In this case, given the neutralization of the acetic acid as a weak one with sodium hydroxide as a strong base, we can see how the moles of the both of them are the same at the equivalence point; thus, it is possible to write:

Thus, we solve for the molarity of the acid to obtain:

Regards!