Answer:
Three of the five oxides are expected to form acidic solutions in water
Explanation:
We have different types of oxides : Acidic oxides, Basic oxides, Amphoteric oxides, Peroxides and Higher oxides.
Only acidic oxides will dissolve in water to give an acidic solution.
Considering the given oxides carefully,
- SO2 will dissolve in water to produce H2SO3 which is acidic.
- Y2O3 will dissolve in water to produce Yttrium(III) hydroxide which is basic.
- MgO will dissolve in water only to produce Mg(OH)2 which is also basic.
- Cl2O dichlorine mono oxide will dissolve in water to produce HClO which is acidic.
- N2O5 will dissolve in water to produce HNO3 which is also acidic.
The equilibrium constant of a reaction is defined as:
"The ratio between equilibrium concentrations of products powered to their reaction quotient and equilibrium concentration of reactants powered to thier reaction quotient".
The reaction quotient, Q, has the same algebraic expressions but use the actual concentrations of reactants.
To solve this question we need this additional information:
<em>For this reaction, K = 6.0x10⁻² and the initial concentrations of the reactants are:</em>
<em>[N₂] = 4.0M; [NH₃] = 1.0x10⁻⁴M and [H₂] = 1.0x10⁻²M</em>
<em />
Thus, for the reaction:
N₂ + 3H₂ ⇄ 2NH₃
The equilibrium constant, K, of this reaction, is defined as:
![K = 6.0x10^{-2} = \frac{[NH_3]^2}{[N_2][H_2]^3}](https://tex.z-dn.net/?f=K%20%3D%206.0x10%5E%7B-2%7D%20%3D%20%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5BH_2%5D%5E3%7D)
And Q, is:
![Q = \frac{[NH_3]^2}{[N_2][H_2]^3}](https://tex.z-dn.net/?f=Q%20%3D%20%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5BH_2%5D%5E3%7D)
Where actual concentrations are:
[NH₃] = 1.0x10⁻⁴M
[N₂] = 4.0M
[H₂] = 2.5x10⁻¹M
Replacing:
![Q = \frac{[1.0x10^{-4}]^2}{[4.0][2.5x10^{-1}]^3}](https://tex.z-dn.net/?f=Q%20%3D%20%5Cfrac%7B%5B1.0x10%5E%7B-4%7D%5D%5E2%7D%7B%5B4.0%5D%5B2.5x10%5E%7B-1%7D%5D%5E3%7D)
<h3>Q = 1.6x10⁻⁷</h3>
As Q < K,
<h3>The chemical system will shift to the right in order to produce more NH₃</h3>
Learn more about chemical equililbrium in:
brainly.com/question/24301138
Answer:
Atoms are made of protons, neutrons and electrons.
Explanation:
The Dalton's atomic theory was an early attempt at describing the properties of atoms. It stipulated that atoms were the smallest indivisible particle of a substance. Chemical reactions occur as a result of a combination or separation of atoms. Atoms of the same element are exactly alike and differ from atoms of other elements. Atoms can neither be created nor destroyed.
As time went on, modern scientific evidence began to modify the original postulates of the Dalton's atomic theory. It was not postulated in 1805 that atoms were composed of subatomic particles; electrons, neutrons and protons. Dalton's theory held the atom to be 'indivisible'. However in 1897, JJ Thompson discovered the electron. Subsequently, the proton and neutrons were discovered. This shows that the atom in itself consisted of even smaller particles.
Answer: The molecular formula will be 
Explanation:
If percentage are given then we are taking total mass is 100 grams.
So, the mass of each element is equal to the percentage given.
Mass of C= 70.6 g
Mass of H = 5.9 g
Mass of O = 23.5 g
Step 1 : convert given masses into moles.
Moles of C =
Moles of H =
Moles of O =
Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.
For C = 
For H = 
For O =
The ratio of C : H: O= 4: 4:1
Hence the empirical formula is 
The empirical weight of
= 4(12)+4(1)+1(16)= 68g.
The molecular weight = 136 g/mole
Now we have to calculate the molecular formula.

The molecular formula will be=
Answer:
21.8 g/mol
Explanation:
Molecular weight of CH4 = 16g/mol
H2 = 2g/mol
N2 = 28g/mol
(16*30 + 2*10 + 28*60)/100
=2180/100
=21.8g/mol