Answer:
Option D. The water in Glass A is cooler than the water in Glass B; therefore, the particles in Glass A move slower.
Explanation:
Solubilities of solutes are enhanced when the temperature is increased.
From the experiment conducted,
It is evident that glass B temperature is higher than glass A temperature, because the solute dissolves faster in glass B than in glass A . This implies that glass A is cooler than glass B, hence the particles in A will move slower than that in B.
Answer:
H₂SO₄
Explanation:
We have a compound formed by 0.475 g H, 7.557 g S, 15.107 g O. In order to determine the empirical formula, we have to follow a series of steps.
Step 1: Calculate the total mass of the compound
Total mass = mass H + mass S + mass O = 0.475 g + 7.557 g + 15.107 g
Total mass = 23.139 g
Step 2: Determine the percent composition.
H: (0.475g/23.139g) × 100% = 2.05%
S: (7.557g/23.139g) × 100% = 32.66%
O: (15.107g/23.139g) × 100% = 65.29%
Step 3: Divide each percentage by the atomic mass of the element
H: 2.05/1.01 = 2.03
S: 32.66/32.07 = 1.018
O: 65.29/16.00 = 4.081
Step 4: Divide all the numbers by the smallest one
H: 2.03/1.018 ≈ 2
S: 1.018/1.018 = 1
O: 4.081/1.018 ≈ 4
The empirical formula of the compound is H₂SO₄.
Answer: The actual yield of
is 60.0 g
Explanation:-
The balanced chemical reaction :

Mass of
=

According to stoichiometry:
1 mole of
gives = 1 mole of 
1.51 moles of
gives =
moles of 
Theoretical yield of 
Percent yield of
= 



Thus the actual yield of
is 60.0 g
Answer:

Explanation:
Given the moles, we are asked to find the mass of a sample.
We know that the molar mass of methanol is 32.0 grams per mole. We can use this number as a fraction or ratio.

Multiply by the given number of moles, which is 2.0

The moles of methanol will cancel each other out.

The denominator of 1 can be ignored.

Multiply.

There are 64 grams of methanol in the sample.