Answer:
Specific gravity of the saturated solution is 2
Explanation:
The specific gravity is defined as the ratio between density of a solution (In this case, saturated solution of potassium iodide, KI) and the density of water. Assuming density of water is 1:
Specific gravity = Density
The density is the ratio between the mass of the solution and its volume.
In 100mL of water, the mass of KI that can be dissolved is:
100mL * (1g KI / 0.7mL) = 143g of KI
That means all the 100g of KI are dissolved (Mass solute)
As the volume of water is 100mL, the mass is 100g (Mass solvent)
The mass of the solution is 100g + 100g = 200g
In a volume of 100mL, the density of the solution is:
200g / 100mL = 2g/mL.
The specific gravity has no units, that means specific gravity of the saturated solution is 2
Answer: Option (A) is the correct answer.
Explanation:
Newton's third law states that when one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction on the first body.
In short we can say that every action has an equal and opposite reaction.
For example, when we hit a wooden table hardly with our hands then we are applying a force on the table and on the other hand table is applying a force in the opposite direction on our hand due to which we get hurt.
Therefore, when force of gravity pulls the man in downward direction then man pulling upward on the earth is applying a force in opposite direction of gravitational pull.
Answer:
AC₄ will precipitate out first.
Explanation:
A solid will precipitate out if the ionic product of the solution exceeds the solubility product.
Let us check the ionic product
a) A₂B₃
Ionic product = [A]²[B]³
[A] = say "s"
[B] = 0.05 , [B]³ = (0.05)³ = 0.000125
2.3 X 10⁻⁸ = [A]²(0.000125)
[A] = 0.0136
b) AC₄
Ionic product = [A] [C]⁴
[A] = "s"
[A][0.05]⁴ = 4.10 X 10⁻⁸
[A]=0.00656 M
So for ionic product to exceed solubility product, we need less concentration of A in case of AC₄.
Answer : The exit temperature of the product is, 
Explanation :
Total heat = Heat lost by liquid + Latent heat of fusion + Heat lost by frozen

where,
Q = Total heat = 6000 kJ
m = mass of product = 15 kg
= specific heat of liquid = 
= latent heat of fusion = 
= specific heat of frozen = 
= initial temperature of liquid = 
= final temperature of liquid = 
= initial temperature of frozen = ?
= final temperature of frozen = 
Now put all the given value in the above expression, we get:
![6000kJ=[15kg\times 4kJ/kg^oC\times (10-2)^oC]+[15kg\times 275kJ/kg]+[15kg\times 2.5kJ/kg^oC\times (2-T_3)^oC]](https://tex.z-dn.net/?f=6000kJ%3D%5B15kg%5Ctimes%204kJ%2Fkg%5EoC%5Ctimes%20%2810-2%29%5EoC%5D%2B%5B15kg%5Ctimes%20275kJ%2Fkg%5D%2B%5B15kg%5Ctimes%202.5kJ%2Fkg%5EoC%5Ctimes%20%282-T_3%29%5EoC%5D)

Thus, the exit temperature of the product is, 
Answer:
The dimerization of butadiene to 4-vinylcyclohexene folows second order kinetics and its rate law will be given by :
![R=k[C_4H_6]^2](https://tex.z-dn.net/?f=R%3Dk%5BC_4H_6%5D%5E2)
Explanation:

The rate of the reaction ;
![R=k[C_4H_6]^x](https://tex.z-dn.net/?f=R%3Dk%5BC_4H_6%5D%5Ex)
As given in the question , that graph of time verses
was linear but plots of
or
was curved.
Generally:
Graph of time verses
for zero order reaction is linear with negative slope.
Graph of time verses
for secon order reaction is linear with negative slope.
Graph of time verses
for secon order reaction is linear with positive slope.
So, the dimerization of butadiene to 4-vinylcyclohexene folows second order kinetics and its rate law will be given by :
![R=k[C_4H_6]^2](https://tex.z-dn.net/?f=R%3Dk%5BC_4H_6%5D%5E2)