The balanced equation for the above reaction is
HBr + KOH ---> KBr + H₂O
stoichiometry of HBr to KOH is 1:1
HBr is a strong acid and KOH is a strong base and they both completely dissociate.
The number of HBr moles present - 0.25 M / 1000 mL/L x 52.0 mL = 0.013 mol
The number of KOH moles added - 0.50 M / 1000 mL/L x 26.0 mL = 0.013 mol
the number of H⁺ ions = number of OH⁻ ions
therefore complete neutralisation occurs.
Therefore solution is neutral. At 25 °C, when the solution is neutral, pH = 7.
Then pH of solution is 7
Answer:
DNA between a human and a banana is 41 percent similar.
Explanation:
Answer:
8.0 moles
Explanation:
Since the acid is monoprotic, 1 mole of the acid will be required to stochiometrically react with 1 mole of NaOH.
Using the formula: 
Concentration of acid = ?
Volume of acid = 10 mL
Concentration of base = 1.0 M
Volume of base = 40 mL
mole of acid = 1
mole of base = 1
Substitute into the equation:

Concentration of acid = 40/10 = 4.0 M
To determine the number of moles of acid present in 2.0 liters of the unknown solution:
Number of moles = Molarity x volume
molarity = 4.0 M
Volume = 2.0 Liters
Hence,
Number of moles = 4.0 x 2.0 = 8 moles
<h2>5060 have three significant figures : Explanation given below </h2>
Explanation:
Significant figures
The significant figures (also known as the significant digits and decimal places) of a number are digits that possess certain meaning .
It includes all digits except: zeros
Rules to find significant figures
1.All non-zero digits are considered significant. For example, 23 has two significant figures.
2.Zeros in between two non-zero digits are significant: like in 202.1201 has seven significant figures.
3.Zeros to the left of the significant figures are not significant. For example, .000021 has two significant figures, zeros have no value .
4.Zeros to the right of the significant figures are significant.
That is the reason in number 5060 , it has 3 significant figures .
Answer:
volume in L = 0.25 L
Explanation:
Given data:
Mass of Cu(NO₃)₂ = 2.43 g
Volume of KI = ?
Solution:
Balanced chemical equation:
2Cu(NO₃)₂ + 4KI → 2CuI + I₂ + 4KNO₃
Moles of Cu(NO₃)₂:
Number of moles = mass/ molar mass
Number of moles = 2.43 g/ 187.56 g/mol
Number of moles = 0.013 mol
Now we will compare the moles of Cu(NO₃)₂ with KI.
Cu(NO₃)₂ : KI
2 : 4
0.013 : 4 × 0.013=0.052 mol
Volume of KI:
<em>Molarity = moles of solute / volume in L</em>
volume in L = moles of solute /Molarity
volume in L = 0.052 mol / 0.209 mol/L
volume in L = 0.25 L