On temperature 25°C (298,15K) and pressure of 1 atm each gas has same amount of substance:
n(gas) = p·V ÷ R·T = 1 atm · 20L ÷ <span>0,082 L</span>·<span>atm/K</span>·<span>mol </span>· 298,15 K
n(gas) = 0,82 mol.
1) m(He) = 0,82 mol · 4 g/mol = 3,28 g.
d(He) = 10 g + 3,28 g ÷ 20 L = 0,664 g/L.
2) m(Ne) = 0,82 mol · 20,17 g/mol = 16,53 g.
d(Ne) = 26,53 g ÷ 20 L = 1,27 g/L.
3) m(CO) = 0,82 mol ·28 g/mol = 22,96 g.
d(CO) = 32,96 g ÷ 20L = 1,648 g/L.
4) m(NO) = 0,82 mol ·30 g/mol = 24,6 g.
d(NO) = 34,6 g ÷ 20 L = 1,73 g/L.
SThe missing coefficient for the skeleton equation below is as follows
skeleton equation
Cr(s) + Fe(No3)2(aq) ------> Fe (s) + Cr(NO3)3 (aq)
the missing coefficient are is as follows
2 Cr(s) + 3 Fe(NO3)2 ---> 3 Fe (s) + 2 Cr(NO3)3
This is obtained by making sure all the molecules are balanced in both sides
Can be produced from a variety of material, including , it’s at a C or D.
<span>Avogadro's number
represents the number of units in one mole of any substance. This has the value
of 6.022 x 10^23 units / mole. This number can be used to convert the number of
atoms or molecules into number of moles. We calculate as follows:
</span>1.40x10^23 molecules of N2 ( 1 mol / 6.022 x 10^23 molecules ) ( 28.02 g / mol ) = 6.51 g N2
The important thing in this question is the unit. The mass equals density * volume. 3.1 L = 3.1 * 10^3 cm3. So the mass is 3.193*10^3 g. 1 pound = 453.95 g. So the answer is 7.04 pounds.