Carbon has the highest ionization energy as its energy 1086KJ\Mol and the rest are between 500 and 800.
Answer:
c. Bomb calorimetry
Explanation:
The hydrocarbons are combustibles, it means that they can react in a combustion reaction to release energy. To measure this amount of energy, it's necessary equipment that the reaction can be placed in a controlled way. The bomb calorimeter is this equipment, which is an adiabatic vessel, with water. The heat is calculated based on the increase in the water temperature.
The coffee-cup calorimetry is used to measure the heat of a dissolution reaction and the bomb manometry is used to measure the pressure.
Here we have to choose the right option which tells the moles of CaCl₂ will react with 6.2 moles of AgNO₃ in the reaction
2AgNO₃ + CaCl₂→ 2AgCl + Ca(NO₃)₂
6.2 moles of silver nitrate (AgNO₃) will react with B. 3.1 moles of calcium chloride (CaCl₂).
From the reaction: 2AgNO₃ + CaCl₂→ 2AgCl + Ca(NO₃)₂
Thus 2 moles of AgNO₃ reacts with 1 mole of CaCl₂
Henceforth, 6.2 moles of AgNO₃ reacts with
= 3.1 moles of CaCl₂.
1 mole of CaCl₂ reacts with 2 moles of AgNO₃. Thus-
A. 2.2 moles of CaCl₂ will react with 2.2×2 = 4.4 moles of AgNO₃.
C. 6.2 moles of CaCl₂ will reacts with 6.2×2 = 12.4 moles of AgNO₃.
D. 12.4 moles of CaCl₂ will reacts with 12.4 × 2 = 24.8 moles of AgNO₃
Thus the right answer is 6.2 moles of AgNO₃ will react with 3.1 moles of CaCl₂.
Molarity = number of mole of substance(n) / volume of solution (V).
n(CaCl2) = mass (CaCl2)/M(CaCl2)
M(CaCl2) = 40+2*35.5 = 111 g/mol
n(CaCl2) =39.5 g CaCl2*1 mol/111g
0.250 M = 39.5 g CaCl2*1 mol/111g*volume of solution (V).
volume of solution (V) = 39.5 g CaCl2*1 mol/(0.250 M*111g) = 1.42 L
<u>Answer:</u> The total pressure of the container will be 2.00 atm
<u>Explanation:</u>
We are given:
Initial moles of phosphorus pentachloride = 1.00 atm
For the given chemical reaction:

By Stoichiometry of the reaction:
1 mole of
produces 1 mole of
and 1 mole of chlorine gas
So, 1.00 atm of
will also produce 1.00 atm of
and 1.00 atm of chlorine gas when the reaction goes to completion.
Total pressure of the container when the reaction goes to completion = 1.00 + 1.00 = 2.00 atm
Hence, the total pressure of the container will be 2.00 atm