So here's how you find the answer:
Given: (rate constants)
K₁ = 4.0 x 10⁻⁴ M⁻¹s⁻¹.
T₁ = 25.0 C = 293 K.
k₂ = 2.6 x10⁻³ M⁻¹s⁻¹.
T₂ = 42.4 C = 315.4 K.
R = 8,314 J/K·mol.
Use the equation:
ln(k₁/k₂) = Ea/R (1/T₂ - 1/T₁).
Transpose:
Ea = R·T₁·T₂ / (T₁ - T₂) · ln(k₁/k₂)
Substitute within the given transposed equation:
<span>Ea = 8,314 J/K·mol · 293 K · 315.4 K ÷ (293 K - 315.4 K) · ln (4.0 x 10⁻⁴ M⁻¹s⁻¹/ 2.6 x 10⁻³ M⁻¹s⁻¹).
</span>
Continuing the solution we get:
<span>Ea = 768315 J·K/mol ÷ (-22,4 K) * (-1.87)
</span>
The value of EA is:
<span>Ea = 64140.58 J/mol ÷ 1000 J/kJ = 64.140 kJ/mol.</span>
The answer is Metallic bonds involve many valence electrons shared by many atoms, so the bonds can move around as the metal is pounded. The metallic bond structure of lead forms a cubic crystal structure and the atoms can roll over one another without breaking the metallic bonds. This is especially because the p orbital electrons of lead can be delocalized and the electrons can be shared with other lead ions in the cubic structure of lead.
Answer:
The correct option is: B) H₂0 and OH⁻ as a conjugate pair
Explanation:
According to Brønsted-Lowry theory, the<u> </u><u>acids</u><u> are the chemical substances that form a conjugate base by donating a proton</u> and <u>bases</u><u> are the chemical substances that form conjugate acid by accepting a proton.</u>
In the given chemical reaction: PO₄³⁻(aq) + H₂O(l) ⇄ HPO₄²⁻(aq) + OH⁻(aq)
<u>According to Brønsted-Lowry theory, PO₄³⁻ and OH⁻ are bases. Whereas, H₂O and HPO₄²⁻ are acids.</u>
<u>Also, PO₄³⁻ and HPO₄²⁻ are the conjugate acid-base pair; and H₂O and OH⁻ are the conjugate acid-base pair.</u>
Answer:
Calcium
Explanation:
Since the element reacts with oxygen to form an oxide with the formula MO, the charge on the element is +2.
Also, since the oxide MO when dissolved in water is basic, the metal is an alkali earth metal.
From the above conditions;
The metal is not arsenic because arsenic is a metalloid has the following oxides As₂O₃ and As₃O₅ and are respectively amphoteric and acidic in nature
The metal is not germanium because is a metalloid and even though germanium oxide has the formula GeO₂, it is amphoteric.
The metal is not chlorine because chlorine is a non-metal
The metal is definitely calcium because calcium oxide has the formula CaO and calcium is an alkaline earth metal.
The metal is not selenium because selenium is anon-meal and its oxide has the formula Se0₂ and is acidic