The total energy in a system due to the temperature and pressure per unit mass in that system is known as specific enthalpy. It is used in thermodynamic equations when one desires to know the energy for a given single unit mass of a component.
Specific enthalpy is calculated by the equation:
H = U + PV
in the given case, Specific volume = 4.684 cm³/g = 149.888 cm³/g moles = 149.888 × 10⁻³ J/g moles
Specific internal energy (U) is 1706 J/mol and pressure is 41.64.
H = 1706 + 41.64 × 149.888 × 10⁻³ × 101.3 joules
= 2428 joules / mole
The answers are the following that can be answered using the chart:
A. Which type of hurricane is expected to strike more frequently this century?
Category 4 + 5C. In general, will hurricanes likely become stronger or weaker this century?
Stronger, because there are more stronger ones thant he weaker ones that can result to hurricane.
E. Which types of hurricanes are expected to drop in frequency by more than 25% this century?
Categories 1, 2, 3
Answer:
2.49*10⁻¹² mol
Explanation:
Use Avogadro's Number for this equation (6.022*10²³). Divide Avogrado's by the number of atoms you have to find moles. You are answer should be 2.49*10⁻¹² mol.
Answer:
<u />
- <u>There are 0.041 g of NH₃ in the same number of molecules as in 0.35 g of SF₆.</u>
<u />
Explanation:
Using the molar mass of the chemical formula SF₆ you can find the number of moles of molecules in 0.35 g of such substance. Then, using the molar mass of NH₃, you can find mass in grams corresponding to the same number of molecules.
<u>1. Find the molar mass of SF₆:</u>
Atom atomic mass number of atoms total mass in 1 mole
S 32.065 g/mol 1 32.065 g
F 18.998 g/mol 6 6 × 18.998 = 113.988 g
=====================
molar mass of SF₆ = 146.053 g/mol
<u>2. Find the number of moles in 0.35 g of SF₆:</u>
- number of moles = mass in grams / molar mass
- number of moles = 0.35 g / 146.053 g / mol = 0.0024 mol
<u>3. Find the molar mass of NH₃:</u>
Atom atomic mass number of atoms total mass 1 mole
N 14.007 g/mol 1 14.007 g
H 1.008 g/mol 3 3 × 1.008 g = 113.988 g
=====================
molar mass of NH₃ = 17.031 g/mol
<u />
<u>4. Find the mass in 0.0024 mol of NH₃:</u>
- mass in grams = number of moles × molar mass
- mass = 0.0024 mol × 17.031 g/mol ≈ 0.041 grams
<u>5. Conclusion: </u>
There are 0.041 g of NH₃ in the same number of molecules as in 0.35 g of SF₆.
Answer: Mass of
required to form 930 kg of iron is 1328 kg
Explanation:
To calculate the number of moles, we use the equation:
.....(1)
For iron:
Given mass of iron = 930 kg = 930000 g (1kg=1000g)
Molar mass of iron = 56 g/mol
Putting values in equation 1, we get:

The chemical equation for the production of iron follows:

By Stoichiometry of the reaction:
2 moles of iron are produced by = 1 mole of 
So, 16607 moles of iron will be produced by =
of 
Now, calculating the mass of
from equation 1, we get:
Mass of
= 
Thus mass of
required to form 930 kg of iron is 1328 kg