Answer:
CaCl₂
Step-by-step explanation:
The <em>empirical formula</em> is the simplest whole-number ratio of atoms in a compound.
The ratio of atoms is the same as the ratio of moles.
So, our job is to calculate the molar ratio of Ca to Cl.
Data:
Mass of Ca = 3.611 g
Mass of Cl = 6.389 g
Calculations
Step 1. <em>Calculate the moles of each element
</em>
Moles of Ca = 3.611 g Ca × (1 mol Ca/(40.08 g Ca)= 0.090 10 mol Ca
Moles of Cl = 6.389 g Cl
Step 2. <em>Calculate the molar ratio of the elements
</em>
Divide each number by the smallest number of moles
Ca:Cl = 0.090 10:0.1802 = 1:2.000
Step 3. Round the molar ratios to the nearest integer
Ca:Cl = 1:2.000 ≈ 1:2
Step 4: <em>Write the empirical formula
</em>
EF = CaCl₂
Molybdenum Arsenide
I think that’s right but not %100 sure
Answer:
The correct answer is Option A (There is no magnetic flux through the wire loop.)
Explanation:
Magnetic flux measures the entire magnetic field that passes through the wire loop.
The right hand rule can be demonstrated on how magnetic flux is generated through the moving current in the wire loop. The magnetic flux through the wire loop will decrease as it moves upward through the magnetic field region.
If the direction of the vector area of the wire loop is to the right, and the switch is closed, it will push the magnetic flux to the right which will now be increased due to an equal increase in the current in the wire loop. But, when the switch is open, this will halt the movement of current through the wire loop thus affecting the generation of magnetic field. This would make the magnetic flux to be zero.
<span>The process that changes the identity and number of protons in a nucleus is fusion, transmutation, and fission.</span>
<span>You are given a cough syrup that contains 5.0% ethyl alcohol, c2h5oh, by mass and its density of the solution is 0.9928 g/ml. The molarity of the alcohol in the cough syrup is 21.55.</span>