Answer:
The correct answer is - option C.
Explanation:
Given: the melting point of HCl is
-114.8 °C, which suggests that below this temperature HCl will be solid.
and, since the boiling point of HCl is - 85.1 °C. It is also suggested that above this temperature HCl will be gas, Therefore.
Solid -114.8 - Ordered arrangement
Liquid -85.1c - Less orderly arranged
Gaseous - Least orderly arranged
Thus, at —90 °C, HCl will be present 'in the liquid state, At — 1 °C, HCl will be present in the gaseous state and at -129 °C, HCl will be present in the solid-state. So, the molecules will be organized in a more orderly manner
.
Thus, the correct answer is - option C
Answer: 53.3
Explanation:
V2=(T2 x P1 x V1)/(T1 x P2)
(320x50x80)/(300x80)
53.3
Answer : The correct option is, Only Student B
Explanation :
Lewis-dot structure : It shows the bonding between the atoms of a molecule and it also shows the unpaired electrons present in the molecule.
In the Lewis-dot structure the valance electrons are shown by 'dot'.
The given molecule is, 
As we know that nitrogen has '5' valence electrons and hydrogen has '1' valence electron.
Therefore, the total number of valence electrons in
= 5 + 3(1) = 8
According to Lewis-dot structure, there are 6 number of bonding electrons and 2 number of non-bonding electrons.
The Lewis dot structure of student A is wrong because there is a coordinate bond present between the nitrogen and hydrogen is not covalent.
Thus, the correct Lewis-dot structure of
is shown by the student B.
Answer:
- m = 1,000/58.5
- b = - 1,000 / 58.5
1) Variables
- molarity: M
- density of the solution: d
- moles of NaCl: n₁
- mass of NaCl: m₁
- molar mass of NaCl: MM₁
- total volume in liters: Vt
- Volume of water in mililiters: V₂
- mass of water: m₂
2) Density of the solution: mass in grams / volume in mililiters
3) Mass of NaCl: m₁
Number of moles = mass in grams / molar mass
⇒ mass in grams = number of moles × molar mass
m₁ = n₁ × MM₁
4) Number of moles of NaCl: n₁
Molarity = number of moles / Volume of solution in liters
M = n₁ / Vt
⇒ n₁ = M × Vt
5) Substitue in the equation of m₁:
m₁ = M × Vt × MM₁
6) Substitute in the equation of density:
d = [M × Vt × MM₁ + m₂] / (1000Vt)
7) Simplify and solve for M
- d = M × Vt × MM₁ / (1000Vt) + m₂/ (1000Vt)
- d = M × MM₁ / (1000) + m₂/ (1000Vt)
Making the simplistic assumption that the dissolved NaCl(s) does not affect the volume of the solvent water means 1000Vt = V₂
- d = M × MM₁ / (1000) + m₂/ V₂
m₂/ V₂ is the density of water: 1.00 g/mL
- d = M × MM₁ / (1000) + 1.00 g/mL
- M × MM₁ / (1000) = d - 1.00 g/mL
- M = [1,000/MM₁] d - 1,000/ MM₁
8) Substituting MM₁ = 58.5 g/mol
- M = [1,000/58.5] d - [1,000/ 58.5]
Comparing with the equation Molarity = m×density + b, you obtain:
- m = 1,000/58.5
- b = - 1,000/58.5
The correct option is: VAPORIZATION AND CONDENSATION.
Matters have the ability to change from one state to another state, this is called state transition. In the question given above, the carbon dioxide, which Uyen's was breathing out came in form of vapors and forms a cloud by condensing. Condensation is the process by which water droplets are formed when a vapor from comes in contact with cold surfaces. In the question given above, the vaporized gas condenses when it comes in contact with the humid air.