<span>08 moles Li3N * 1mole N2/2moles Li3N = 0.04 </span>
Answer: C. 25.6 kPa
Explanation:
The Gauge pressure is defined as the amount of pressure in a fluid that exceeds the amount of pressure in the atmosphere.
As such, the formula will be,
PG = PT – PA
Where,
PG is Gauge Pressure
PT is Absolute Pressure
PA is Atmospheric Pressure
Inputted in the formula,
PG = 125.4 - 99.8
PG = 25.6 kPa
The gauge pressure inside the container is 25.6kPa which is option C.
A strong electrolyte like MgCl2 dissociates completely as per the following reaction:

As you can see, from 1 molecule of MgCl2 produces 3 ions on dissociation.
So, 1 mole of MgCl2 produces 3 moles of ions.
Now, Moles of MgCl2 = Volume x Molarity
= 0.04 x 0.345 [Change volume to Litres]
= 0.0138 moles
Now, total moles of ions = 0.0138 x 3 = 0.0414
Answer:
To determine the enthalpy and entropy of dissolving a compound, you need to measure the Ksp at multiple temperatures. Then, plot ln(Ksp) vs. 1/T. The slope of the plotted line relates to the enthalpy (ΔH) of dissolving and the intercept of the plotted line relates to the entropy (ΔS) of dissolving.
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us use the thermodynamic definition of the Gibbs free energy and its relationship with Ksp as follows:

Thus, by combining them, we obtain:

Which is related to the general line equation:

Whereas:

It means that we answer to the blanks as follows:
To determine the enthalpy and entropy of dissolving a compound, you need to measure the Ksp at multiple temperatures. Then, plot ln(Ksp) vs. 1/T. The slope of the plotted line relates to the enthalpy (ΔH) of dissolving and the intercept of the plotted line relates to the entropy (ΔS) of dissolving.
Regards!