Answer is: 8568.71 of baking soda.
Balanced chemical reaction: H₂SO₄ + 2NaHCO₃ → Na₂SO₄ + 2CO₂ + 2H₂O.
V(H₂SO₄) = 17 L; volume of the sulfuric acid.
c(H₂SO₄) = 3.0 M, molarity of sulfuric acid.
n(H₂SO₄) = V(H₂SO₄) · c(H₂SO₄).
n(H₂SO₄) = 17 L · 3 mol/L.
n(H₂SO₄) = 51 mol; amount of sulfuric acid.
From balanced chemical reaction: n(H₂SO₄) : n(NaHCO₃) = 1 :2.
n(NaHCO₃) = 2 · 51 mol.
n(NaHCO₃) = 102 mol, amount of baking soda.
m(NaHCO₃) = n(NaHCO₃) · M(NaHCO₃).
m(NaHCO₃) = 102 mol · 84.007 g/mol.
m(NaHCO₃) = 8568.714 g; mass of baking soda.
We assume that this gas is an ideal gas. We use the ideal gas equation to calculate the amount of the gas in moles. It is expressed as:
PV = nRT
(672) (1/760) (36.52) = n (0.08206) ( 68 +273.15)
n = 1.15 mol of gas
Hope this answers the question. Have a nice day.
Answer : The correct option is, (A)
because one of each is produced every time an
transfers from one water molecule to another.
Explanation :
As we know that, when the two water molecule combine to produced hydronium ion and hydroxide ion.
The balanced reaction will be:

Acid : It is a substance that donates hydrogen ion when dissolved in water.
Base : It is a substance that accepts hydrogen ion when dissolved in water.
From this we conclude that, the hydrogen ion are transferred from one water molecule to the another water molecule to form hydronium ion and hydroxide ion. In this reaction, one water molecule will act as a base and another water molecule will act as an acid.
Hence, the correct option is, (A)
Answer : The process is not spontaneous.
Explanation :
As, we know that:
Change in entropy = Change in entropy of system + Change in entropy of surrounding
As we are given in question, the entropy of surroundings decrease by the same amount as the entropy of the system increases.
For the given reaction to be spontaneous, the total change in entropy should be positive.
Given :
Entropy change of system = +125J/K
Entropy change of surroundings = -125J/K
Total change in entropy = Entropy change of system + Entropy change of surroundings
Total change in entropy = 125 J/K + (-125 J/K)
Total change in entropy = 0
The process is at equilibrium because the entropy change is equal to zero. So, the process is not spontaneous.
Let us differentiate accuracy from precision. Accuracy is the nearness of the measured value to the true or exact value. On the other hand, precision is the nearness of the measured values between each other. So, for precision, select the student in which the measured values are very near to each other. That would be Student III. Now, for accuracy, let's find the average for each student.
Student I: (<span>8.72g+8.74g+8.70g)/3 = 8.72 g
Student II: (</span><span>8.56g+8.77g+8.83g)/3 = 8.72 g
Student III: (</span><span>8.50g+8.48g+8.51g)/3 = 8.50 g
Student IV: (</span><span>8.41g+8.72g+8.55g)/3 = 8.56 g
From the given results, the accurate one would be Students I and II. So, we make a compromise. Even though Student III is precise, it is not accurate. If you compare between Students I and II, the more precise data would be Student I. Therefore, the answer is Student I.</span>