Answer is: a lower freezing point has solution of K₂SO₄.
Change in freezing
point from pure solvent to solution: ΔT =i · Kf · b.<span>
Kf - molal freezing-point depression constant for water is 1.86°C/m.
b - molality, moles of solute per
kilogram of solvent.
i - </span>Van't
Hoff factor.<span>
b(K</span>₂SO₄<span>) = 0.35 m.
</span>b(KCl) = 0.5 m.
i(K₂SO₄) = 3.
i(KCl) = 2.
ΔT(K₂SO₄) = 3 · 0.35 m · 1.86°C/m.
ΔT(K₂SO₄) = 1.953°C.
ΔT(KCl) = 2 · 0.5 m · 1.86°C/m.
ΔT(KCl) = 1.86°C.
Answer:
-1273.3
Explanation:
Enthalpy of formation of a compound is the amount of heat absorbed or evolved when one mole of the compound is formed from other compounds.
enthalpy of formation Of CO2 = 2 X -393.5 = -787
enthalpy of formation Of C2H5OH = 2 X -277.7 = -555.4
enthalpy of formation Of C6H12O6 = 69.1 (reverse sign) + (-787 + -555.4) = - 1273.3 Joules
The greatest amount of energy released per gram of reactants occurs during a (1) redox reaction, although it should be noted that there are exceptions depending on environment.
Answer: 
Explanation:
Significant figures : The figures in a number which express the value or the magnitude of a quantity to a specific degree of accuracy is known as significant digits.
Rules for significant figures:
Digits from 1 to 9 are always significant and have infinite number of significant figures.
All non-zero numbers are always significant.
All zero’s between integers are always significant.
All zero’s after the decimal point are always significant.
All zero’s preceding the first integers are never significant.
Thus
has three significant figures
Answer:
The correct answer is: The substitution altered the secondary and tertiary structure of the enzyme so that the mutated enzyme folds into a different shape than the normal enzyme does.
Explanation:
In the given condition, the substitution mutation of gene causes a replacement of serine by phenylalanine amino acids which causes a reduction in the activity of the enzyme. Since serine is polar and has -OH or hydroxy group involves the information of binding of biological catalyst to the substrate.
The primary structure of a protein is significant which finalizes the number of amino acids their sequence. The mutation of protein also affects both secondary and tertiary structures as it disturbs the structure of the protein and affects the catalytic activity as well as the binding affinity of the substrate.
the substitution of serin by phenylalanine does not affect or influence the mass of enzyme.