Answer:
Hydrogen peroxide should be stored in
1) a cool environment
2) with amber bottles away from sunlight
3) with little drops of sodium phosphate
Explanation:
It has been confirmed that heat and light aids in the decomposition of hydrogen peroxide according to the equation; 2H2O2→2 H2O + O2.
This means that hydrogen peroxide must be stored in a cool place. This will reduce its rate of decomposition. Secondly, it should be stored in amber bottles away from light since light also aids in its decomposition.
Thirdly, drops of sodium phosphate may be added to prevent its catalytic decomposition during storage.
The force on the wall is actually the pressure exerted by gas molecules
Higher the pressure more the force exerted on the walls of container
The pressure depends upon the number of molecules of a gas
In a mixture of gas the pressure depends upon the mole fraction of the gas
As given the mole fraction of He is more than that of H2 therefore He will exert more pressure on the wall
The ratio of impact will be
H2 / He = 2/3 / 1/3 = 2: 1
How does that mean that the number is a little too late and you don’t have a phone number so you please look at it
Let's look at the molar weight of the answers:
NO is 30 g/mol
NO2 is 46
N2O is 44
N2O4 is 124
<span>We have the grams of the product, so we need the moles in order to calculate the molar weight. We us PV=nRT for this, assuming standard temperature and pressure. </span>
You were given the liters (.120L)
Std pressure is 1 atmosphere
You're looking for n, the number of moles
<span>Temp is 293.15 kelvin, thats standard </span>
And r is the gas constant in liters-atm per mol kelvin
(.120 liters)(1atm)=n(293.15K)(.08206)
Solving for n is .0049883835 mol
<span>.23g divided by .0049883 mol is about 46g/mol. You're answer is B I think, NO2
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
Answer:
Gd → Gd⁺ + 1e⁻, Gd⁺ → Gd⁺² + 1e⁻, Gd⁺² → Gd⁺³ + 1e⁻
Explanation:
The ionization energy is the energy necessary to remove one electron of the atom, transforming it in a cation. The first ionization energy is the energy necessary to remove the first electron, the second energy, to remove the second electron, and then successively.
Thus, for gadolinium (Gd)
Fisrt ionization:
Gd → Gd⁺ + 1e⁻
Second ionization:
Gd⁺ → Gd⁺² + 1e⁻
Third ionization:
Gd⁺² → Gd⁺³ + 1e⁻