Answer:
3.43 %
Explanation:
We need to calculate first the number of moles of CeO2 produced in the combustion. Given its formula we know how many moles of Ce atom are present. From there calculate the mass this number of moles this represent and then one can calculate the percentage.
0.1848 g CeO2 x 1 mol CeO2/172.114g = 0.00107 mol CeO2
0.00107 mol CeO2 x 1 mol Ce/ 1 mol CeO2 = 0.00107 mol Ce
.00107 mol Ce x 140.116 g Ce/ mol = 0.150 g Ce
0.150 g Ce/ 4.3718 g sample x 100 = 3.43 %
According to this formula:
K= A*(e^(-Ea/RT) when we have K =1.35X10^2 & T= 25+273= 298K &R=0.0821
Ea= 85.6 KJ/mol So by subsitution we can get A:
1.35x10^2 = A*(e^(-85.6/0.0821*298))
1.35x10^2 = A * 0.03
A= 4333
by substitution with the new value of T(75+273) = 348K & A to get the new K
∴K= 4333*(e^(-85.6/0.0821*348)
= 2.16 x10^2
Answer is: 0,133 mol/ l· atm.
T(chlorine) = 10°C = 283K.
p(chlorine) = 1 atm.
V(chlorine) = 3,10 l.
R - gas constant, R = 0.0821 atm·l/mol·K.
Ideal gas law: p·V = n·R·T
n(chlorine) = p·V ÷ R·T.
n(chlorine) = 1atm · 3,10l ÷ 0,0821 atm·l/mol·K · 283K = 0,133mol.
Henry's law: c = p·k.
k - <span>Henry's law constant.
</span>c - solubility of a gas at a fixed temperature in a particular solvent.
c = 0,133 mol/l.
k = 0,133 mol/l ÷ 1 atm = 0,133 mol/ l· atm.