Answer:
for this reaction at this temperature is 0.029
Explanation:
Moles of
= 2.00 mole
Volume of solution = 4.00 L
Initial concentration of
The given balanced equilibrium reaction is,

Initial conc. 0.500 M 0 M 0 M
At eqm. conc. (0.500-2x) M (x) M (x) M
The expression for equilibrium constant for this reaction will be,
![K_c=\frac{[H_2\times [Br_2]}{[HBr]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_2%5Ctimes%20%5BBr_2%5D%7D%7B%5BHBr%5D%5E2%7D)
Equilibrium concentration of
= x = 0.0955 M
Now put all the given values in this expression, we get :


Thus
for this reaction at this temperature is 0.029
Answer:
Explanation:
General reaction of acid in water is as follows:
HCl + H2O = H3O+ + Cl-
Thus Acids increase the concentration of hydronium ions in solution by donating hydrogen ions to water molecules is true
Answer:
Supervision of weights and measures promotes accurate measurements of goods and services to ensure that everybody gets a fair trade in the marketplace. Not so coincidentally it also is a deterrent to ensure that traders are being honest in their trade practises.
Explanation:
Since Kw= [H⁺][OH⁻], and the concentration of both substances are the same, the equation is now Kw=[H⁺]²
So,
3.31x10⁻¹³ = [H⁺]²
Take the square root= 5.75x10⁻⁷
Then take the negative log to find the pH:
-log(5.75x10⁻⁷) = 6.25
Answer:
the change is evaporation
Explanation:
the water heats up at the surface of the water and evaporates