Answer:
Explanation:
<u>1. Number of moles of gasoline</u>
a) Convert 60.0 liters to grams
- mass = 0.77kg/liter × 60.0 liter = 46.2 kg
- 46.2kg × 1,000g/kg = 46,200g
b) Convert 46,200 grams to moles
- molar mass of C₈H₁₈ = 114.2 g/mol
- number of moles = mass in grams / molar mass
- number of moles = 46,200g / (114.2 gmol) = 404.55 mol
<u>2. Number of moles of carbon dioxide, CO₂ produced</u>
a) Balanced chemical equation (given):
- C₈H₁₈ (l) + ²⁵/₂ O₂ (g) → 8 CO₂ (g) + 9 H₂O (g)
b) mole ratio:
- 1 mol C₈H₁₈ / 8 mol CO₂ = 404.55 mol C₈H₁₈ / x
Solve for x:
- x = 404.55mol C₈H₁₈ × 8 mol CO₂ / 1mol C₈H₁₈ = 3,236.4 mol CO₂
<u> 3. Convert the number of moles of carbon dioxide to volume</u>
Use the ideal gas equation:
- R = 0.08206 (mol . liter)/ (K . mol)
Substitute and compute:
- V =3,236.4 mol × 0.08206 (mol . liter) / (K . mol) 298.15K / 1 atm
Round to two significant figures (because the density has two significant figures): 79,000 liters ← answer
Answer:
O C. The atom has 7 protons and 7 electrons.
If the proton amd electron of atoms are equal it is said to be electrically nuetral
Answer: The mass of the gas is 18.3 g/mol.
Explanation:
To calculate the rate of diffusion of gas, we use Graham's Law.
This law states that the rate of effusion or diffusion of gas is inversely proportional to the square root of the molar mass of the gas. The equation given by this law follows:




Squaring both sides and solving for 

Hence, the molar mas of unknown gas is 18.3 g/mol.
Answer:
E. CH₄ < CH₃Cl < CH₃OH < RbCl
Explanation:
The molecule with the stronger intermolecular forces will have the higher boiling point.
The order of strength of intermolecular forces (strongest first) is
- Ion-Ion
- Hydrogen bonding
- Dipole-dipole
- London dispersion
RbCl is a compound of a metal and a nonmetal. It is an ionic compound, so it has the highest boiling point.
CH₃Cl has a C-Cl polar covalent bond. It has dipole-dipole forces, so it has the second lowest boiling point.
CH₃OH has an O-H bond. It has hydrogen bonding, so it has the second highest boiling point.
CH₄ has nonpolar covalent C-H bonds. It has only nonpolar bonds, so the only attractive forces are London dispersion forces. It has the lowest boiling point.
Thus, the order of increasing boiling points is
CH₄ < CH₃Cl < CH₃OH < RbCl
Answer:
molecular weight (Mb) = 0.42 g/mol
Explanation:
mass sample (solute) (wb) = 58.125 g
mass sln = 750.0 g = mass solute + mass solvent
∴ solute (b) unknown nonelectrolyte compound
∴ solvent (a): water
⇒ mb = mol solute/Kg solvent (nb/wa)
boiling point:
- ΔT = K*mb = 100.220°C ≅ 373.22 K
∴ K water = 1.86 K.Kg/mol
⇒ Mb = ? (molecular weight) (wb/nb)
⇒ mb = ΔT / K
⇒ mb = (373.22 K) / (1.86 K.Kg/mol)
⇒ mb = 200.656 mol/Kg
∴ mass solvent = 750.0 g - 58.125 g = 691.875 g = 0.692 Kg
moles solute:
⇒ nb = (200.656 mol/Kg)*(0.692 Kg) = 138.83 mol solute
molecular weight:
⇒ Mb = (58.125 g)/(138.83 mol) = 0.42 g/mol