Answer:
mass of U-235 = 15.9 g (3 sig. figures)
Explanation:
1 atom can produce -------------------------> 3.20 x 10^-11 J energy
x atoms can produce ----------------------> 1.30 x 10^12 J energy
x = 1.30 x 10^12 / 3.20 x 10^-11
x = 4.06 x 10^22 atoms
1 mol ----------------------> 6.023 x 10^23 atoms
y mol ----------------------> 4.06 x 10^22 atoms
y = 0.0675 moles
mass of U-235 = 0.0675 x 235 = 15.8625
mass of U-235 = 15.9 g (3 sig. figures)
Answer:
9
Explanation:
The structure of fluorophore used in the experiments has been drawn in the attachment. And from the drawing counting we can say that there are 9 sp2-hybridized carbon atoms present. Fiuorophores are a fluorescent chemical compound that can re-emit light upon light excitation. Normally used to produce absorbance and emission spectra.
<span>The test dummy will continue forward until it makes contact with another object.</span>
Did you intend to write [PdCl4]^-2 instead of PdCl2-4? If so, then:
<span>Cathode: [PdCl4]^-2(aq) + 2e- ======⇒ Pd(s) + 4Cl-(aq) </span>
<span>Anode: Cd(s) ==⇒ Cd+2(aq) + 2e-</span>
A conversion factor is a fraction or a ratio representing a relationship of two different measurement values. To write 20% m/v to a conversion factor, we need to remember that a percent is a value that represents the amount of a part per 100 units of the whole. M/v in the given value represents that the percentage is by mass per volume. So, to write it as a conversion factor, we do as follows:
20% m/v = 20 mass units / 100 volume units = 1 mass units / 5 volume units
Usually units of this are in g per L. So, it is equivalent to 1 g / 5 L