Answer is: the boiling point of the resulting solution of sucrose is 100.42°C.
m(H₂<span>O) = 15.2 g ÷ 1000 g/kg = 0.0152 kg.
</span>m(C₁₂H₂₂O₁₁<span>) = 4.27 g.
n</span>(C₁₂H₂₂O₁₁) = m(C₁₂H₂₂O₁₁) ÷ M(C₁₂H₂₂O₁₁).
n(C₁₂H₂₂O₁₁) = 4.27 g ÷ 342.3 g/mol.
n(C₁₂H₂₂O₁₁) = 0.0125 mol.
b(solution) = n(C₁₂H₂₂O₁₁) ÷ m(H₂O).
b(solution) = 0.0125 mol ÷ 0.0152 kg.
b(solution) = 0.82 m.
ΔT = b(solution) · Kb(H₂O).
ΔT = 0.82 m · 0.512°C/m.
ΔT = 0.42°C.
Tb = 100°C + 0.42°C = 100.42°C.
Concept:
<em><u>Latent Heat of Vaporization</u></em>: It is defined as the amount of heat required to change the state of mater without changing of its temperature.
From the given question, the temperature at the boiling point remained constant despite the continued addition of heat by the Bunsen burner. <em>Actually,</em> this amount of heat is used by water to break the intermolecular bonds between the water molecules in the form of latent heat that converts the liquid state of water into vapor state of water.
Hence, the correct option will be d.<u>The energy was used to break the intermolecular bonds between the water molecules. </u>
(2) argon. This is because Ca originally has 20 total electrons with a configuration of 2,8,8,2. When it looses its valence electrons it remains with 18 electrons total (2,8,8 config). Argon has 18 electrons total too (2,8,8 config).
Answer:
The
of the given reaction is -129.6 kJ
Explanation:
The given chemical reaction is as follows.

Enthalpy of each reactant and products are as follows.




In the given chemical reaction involved two C-H bonds in the reactant side and one C-C bond in the product side therefore, the enthalpy of formation will be the negative.



Therefore, The
of the given reaction is -129.6 kJ
Answer:
1. Gases can be easily liquefied into very small volumes and stored in liquid form Eg in LPGA cylinders and used in homes.
2. Balloons can be easily filled with air.