<span>NaCl
First calculate the molar mass of NaCl and AgNO3 by looking up the atomic weights of each element used in either compound
Sodium = 22.989769
Chlorine = 35.453
Silver = 107.8682
Nitrogen = 14.0067
Oxygen = 15.999
Now multiply the atomic weight of each element by the number of times that element is in each compound and sum the results
For NaCl
22.989769 + 35.453 = 58.44277
For AgNO3
107.8682 + 14.0067 + 3 * 15.999 = 169.8719
Now calculate how many moles of each substance by dividing the total mass by the molar mass
For NaCl
4.00 g / 58.44277 g/mol = 0.068443 mol
For AgNO3
10.00 g / 169.8719 g/mol = 0.058868
Looking at the balanced equation for the reaction, there is a 1 to 1 ratio in molecules for the reaction. Since there is a smaller number of moles of AgNO3 than there is of NaCl, that means that there will be some NaCl unreacted, so the excess reactant is NaCl</span>
Answer is: A. 1.81 mol.
Balanced chemical reaction: FeCl₂ + 2KOH → Fe(OH)₂ + 2KCl.
n(FeCl₂) = 4.15 mol; amount of iron(II) chloride.
n(KOH) = 3.62 mol; amount of potassium hydroxide, limiting reactant.
From chemical reaction: n(KOH) : n(Fe(OH)₂) = 2 : 1.
n(Fe(OH)₂) = n(KOH) ÷ 2.
n(Fe(OH)₂) = 3.62 mol ÷ 2.
n(Fe(OH)₂) = 1.81 mol; amount of iron(II) hydroxide.
Answer:
no he just repeated the steps and made more of the same cleaner my guy
Explanation:
Hey there!
Molar mass N2 = 28.01 g/mol
Therefore:
28.01 g N2 -------------- 6.02*10²² molecules N2
( mass N2 ?? ) ----------- 25,000 molecules N2
mass N2 = ( 25,000 * 28.01 ) / ( 6.02*10²³ )
mass N2 = 700250 / 6.02*10²³
mass N2 = 1.163*10⁻¹⁸ g
Hope that helps!