Answer:
Li
Explanation:
The phenomenon of wave particle duality was well established by Louis deBroglie. The wavelength associated with matter waves was related to its mass and velocity as shown below;
λ= h/mv
Where;
λ= wavelength of matter waves
m= mass of the particle
v= velocity of the particle
This implies that if the velocities of all particles are the same, the wavelength of matter waves will now depend on the mass of the particle. Hence; the wavelength of a matter wave associated with a particle is inversely proportional to the magnitude of the particle's linear momentum. The longest wavelength will then be obtained from the smallest mass of matter. Hence lithium which has the smallest mass will exhibit the longest DeBroglie wavelength
Answer:
The time required for the coating is 105 s
Explanation:
Zinc undergoes reduction reaction and absorbs two (2) electron ions.
The expression for the mass change at electrode
is given as :

where;
M = molar mass
Z = ions charge at electrodes
F = Faraday's constant
I = current
A = area
t = time
also;
=
; replacing that into above equation; we have:
---- equation (1)
where;
A = area
d = thickness
= density
From the above equation (1); The time required for coating can be calculated as;
![[ \frac{20 cm^2 *0.0025 cm*7.13g/cm^3}{65.38g/mol}*2 \frac{moles\ of \ electrons}{mole \ of \ Zn} * 9.65*10^4 \frac{C}{mole \ of \ electrons } ] = (20 A) t](https://tex.z-dn.net/?f=%5B%20%5Cfrac%7B20%20cm%5E2%20%2A0.0025%20cm%2A7.13g%2Fcm%5E3%7D%7B65.38g%2Fmol%7D%2A2%20%5Cfrac%7Bmoles%5C%20of%20%5C%20electrons%7D%7Bmole%20%5C%20of%20%5C%20Zn%7D%20%2A%209.65%2A10%5E4%20%5Cfrac%7BC%7D%7Bmole%20%5C%20of%20%5C%20electrons%20%7D%20%20%5D%20%3D%20%2820%20A%29%20t)

= 105 s
In this question we need to find the new volume of the gas. Since we have been given the pressure and temperature change, we can used to combined gas law equation.

the parameters for 1st instance are given on the left side and parameters for the second instance are given on the right side of the equation
(319 mmHg x 0.558 L)/ 115 K = (215 mmHg x V)/387 K
V = 2.79 L
Answer:

Explanation:
The expression for Clausius-Clapeyron Equation is shown below as:
Where,
P is the vapor pressure
ΔHvap is the Enthalpy of Vaporization
R is the gas constant (8.314×10⁻³ kJ /mol K)
c is the constant.
For two situations and phases, the equation becomes:

Given:
= 13.95 torr
= 144.78 torr
= 25°C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (25 + 273.15) K = 298.15 K
= 298.15 K
= 75°C = 348.15 K
So,





a scale-model mound made of the same materials that make the real hill