I'm not 100% sure on this, but I would go with C) NaCl.
NaCl is a salt, and that is used to melt the ice on the roads. Hope this helps!
<u>Answer:</u> The chemical equations and equilibrium constant expression for each ionization steps is written below.
<u>Explanation:</u>
The chemical formula of carbonic acid is
. It is a diprotic weak acid which means that it will release two hydrogen ions when dissolved in water
The chemical equation for the first dissociation of carbonic acid follows:

The expression of first equilibrium constant equation follows:
![Ka_1=\frac{[H^+][HCO_3^{-}]}{[H_2CO_3]}](https://tex.z-dn.net/?f=Ka_1%3D%5Cfrac%7B%5BH%5E%2B%5D%5BHCO_3%5E%7B-%7D%5D%7D%7B%5BH_2CO_3%5D%7D)
The chemical equation for the second dissociation of carbonic acid follows:

The expression of second equilibrium constant equation follows:
![Ka_2=\frac{[H^+][CO_3^{2-}]}{[HCO_3^-]}](https://tex.z-dn.net/?f=Ka_2%3D%5Cfrac%7B%5BH%5E%2B%5D%5BCO_3%5E%7B2-%7D%5D%7D%7B%5BHCO_3%5E-%5D%7D)
Hence, the chemical equations and equilibrium constant expression for each ionization steps is written above.
Answer:
The answer to your question is 50 moles of O₂
Explanation:
Balanced Chemical reactions
1.- N₂(g) + 3H₂ (g) ⇒ 2NH₃ (g)
2.- 4NH₃ (g) + 5O₂(g) ⇒ 4NO (g) + 6H₂O (l)
moles of N₂(g) = 20 moles
moles of O₂(g) = ?
Process
1.- Calculate the moles of NH₃
1 mol of N₂ ------------- 2 moles of NH₃
20 moles of N₂ --------- x
x = (20 x 2) / 1
x = 40 moles of NH₃
2.- Calculate the moles of O₂
4 moles of NH₃ -------------- 5 O₂
40 moles of NH₃ ------------ x
x = (40 x 5) / 4
x = 200 / 4
x = 50 moles of O₂
Answer:
ν = 7.04 × 10¹³ s⁻¹
λ = 426 nm
It falls in the visible range
Explanation:
The relation between the energy of the radiation and its frequency is given by Planck-Einstein equation:
E = h × ν
where,
E is the energy
h is the Planck constant (6.63 × 10⁻³⁴ J.s)
ν is the frequency
Then, we can find frequency,

Frequency and wavelength are related through the following equation:
c = λ × ν
where,
c is the speed of light (3.00 × 10⁸ m/s)
λ is the wavelength

A 426 nm wavelength falls in the visible range (≈380-740 nm)
First of all, there are five types of solid materials:
Metallic solids which are solids composed of metal atoms that are held together by metallic bonds.
Network solid is a chemical compound in which the atoms are bonded by covalent bonds in a continuous network extending throughout the material.
Molecular solid is a solid consisting of discrete molecules.
Ionic solid is a chemical compound composed of ions held together by electrostatic forces termed ionic bonding.
Amorphous solid is non-crystalline solid that lacks the long-range order that is characteristic of a crystal.
Now, after the defined all the types of solid materials in the equation lets to solve it.
A. the answer is the network solids, because covalent bonds are relatively strong, covalent are typically characterized by hardness, strength, and high melting points.
B. the answer is the metallic solids, due to that heat conduction occurs when a substance is heated and the particles will gain more energy vibrating more. These molecules then bump into nearby particles and transfer some of their energy to them and in metals this process have a higher probability than in the case of other solids due to the nature of the chemical bonds. It also has a range of hardness due to the strength of metallic bonds which varies dramatically.
C. the answer is the ionic solid; due to positive and negative ions which are bonded to form a crystalline solid held together by charge attractions.