Answer:
Buffers are resistant to high pH changes.
Explanation:
This perfectly explains the reason why we use buffers. Buffers are substances which consist of a weak acid and its conjugate base. Buffers are resistant to significant pH changes upon addition of strong acids or bases. To illustrate this, let's say we have a buffer consisting of 0.1 mol of HF, a weak acid, and 0.1 mol of NaF (fluoride is a conjugate base of HF).
- Let's say we add some strong acid, in a general form, this acid would be represented as
. In this case, conjugate base will react and neutralize it to produce some amount of HF:
. - Similarly, if we add some strong base
, the acidic component will react with it to produce some amount of conjugate base:
. The ratio of HF to NaF in this case is held around the same value for addition of small amounts of strong acids/bases, so pH is kept almost constant, while in neutral water, pH would drastically increase or decrease.
Answer:
[KCl] = 1.33 M
Explanation:
Molarity is mol /L
Mol of solute in 1 L of solution
Volume of solution is 750 mL
750 mL / 1000 = 0.750 L
1 mol / 0.750L = M → 1.33
Answer:
Explanation:
No of molecules = 3.612*10(24)
Avogadro's number = 6.022*10(23)
no of moles = No of molecules/Avogadro's number
No of moles =3.612*10(24)/6.022*10(23)
No of moles = 6mol
The density of a substance can simply be calculated by
dividing the mass by the volume:
density = mass / volume
Therefore calculating for the density since mass and volume
are given:
density = 46.0 g / 34.6 mL
density = 1.33 g / mL
Particles in a liquid are more loosely packed there for they have more room to move and can flow around eachother . Hope this helps XD