<span>Answer:
It depends on what came after "0.5440 M H...".
If it was a monoprotic acid, like HCl, the calculation would go like this:
(55.25 mL) x (0.5440 M acid) x (1 mol KOH / 1 mol acid) / (0.2450 M KOH) =
122.7 mL KOH
If it was a diprotic acid, like H2SO4, like this:
(55.25 mL) x (0.5440 M acid) x (2 mol KOH / 1 mol acid) / (0.2450 M KOH) =
245.4 mL KOH
If it was a triprotic acid, like H3PO4, like this:
(55.25 mL) x (0.5440 M acid) x (3 mol KOH / 1 mol acid) / (0.2450 M KOH) =
368.0 mL KOH</span>
The answer to this question is D! The ball and stick model! Hope this helps :)
Answer:
Option (A) saturated and is at equilibrium with the solid KCl
Explanation:
A saturated solution is a solution which can not dissolve more solute in the solution.
From the question given above, we can see that the solution is saturated as it can not further dissolve any more KCl as some KCl is still visible in the flask.
Equilibrium is attained in a chemical reaction when there is no observable change in the reaction system with time. Now, observing the question given we can see that there is no change in flask as some KCl is still visible even after thorough shaking. This simply implies that the solution is in equilibrium with the KCl solid as no further dissolution occurs.
Those are the correct steps, young chemist. Don't be discouraged by an insane answer.
Answer:
It can be concluded that the third step of the reaction is very fast, in this way, it does not contribute to the rate law
Explanation:
Please, observe the solution in the attached Word document.