Answer:
6.72M of HNO3
Explanation:
In the problem you are diluting the original HNO3 solution by the addition of some water. The final volume is:
290.7mL + 350.0mL = 640.7mL
And you are diluting the solution:
640.7mL / 350.0mL = 1.8306 times
As the original concentration was 12.3M, the final concentration will be:
12.3M / 1.8306 =
<h3>6.72M of HNO3</h3>
When sodium metal reacts with chlorine gas, the product would be sodium chloride or the table salt. The balanced chemical reaction would be:
2Na + Cl2 = 2NaCl
IN balancing reactions, it is important to remember that the number of atoms at each side should be equal. Hope this answers the question.
Answer- The correct choice of answer out of all would be option C.
Explanation
The given substance magnesium chloride made out of combination of chlorine and magnesium is a compound. Where magnesium has two positive ions and chlorine has two negative ions which trigger the reaction.
Hence the oxidation of the 2 positive ions of Magnesium takes place and reduction of the Negative Ion chlorine has to offer attract and stabilize each other by forming the compound
.
First, we assume that helium behaves as an ideal gas such that the ideal gas law is applicable.
PV = nRT
where P is pressure, V is volume, n is number of moles, R is universal gas constant, and T is temperature. From the equation, if n, R, and T are constant, there is an inverse relationship between P and V. From the given choices, the container with the greatest pressure would be the 50 mL.
Answer:
Explanation:
Given that:
the temperature
= 250 °C= ( 250+ 273.15 ) K = 523.15 K
Pressure = 1800 kPa
a)
The truncated viral equation is expressed as:

where; B = -
C = -5800 
R = 8.314 × 10³ cm³ kPa. K⁻¹.mol⁻¹
Plugging all our values; we have


Multiplying through with V² ; we have


V = 2250.06 cm³ mol⁻¹
Z = 
Z = 
Z = 0.931
b) The truncated virial equation [Eq. (3.36)], with a value of B from the generalized Pitzer correlation [Eqs. (3.58)–(3.62)].
The generalized Pitzer correlation is :












The compressibility is calculated as:


Z = 0.9386


V = 2268.01 cm³ mol⁻¹
c) From the steam tables (App. E).
At 
V = 0.1249 m³/ kg
M (molecular weight) = 18.015 gm/mol
V = 0.1249 × 10³ × 18.015
V = 2250.07 cm³/mol⁻¹
R = 729.77 J/kg.K
Z = 
Z = 
Z = 0.588