Answer:
Li
Explanation:
The phenomenon of wave particle duality was well established by Louis deBroglie. The wavelength associated with matter waves was related to its mass and velocity as shown below;
λ= h/mv
Where;
λ= wavelength of matter waves
m= mass of the particle
v= velocity of the particle
This implies that if the velocities of all particles are the same, the wavelength of matter waves will now depend on the mass of the particle. Hence; the wavelength of a matter wave associated with a particle is inversely proportional to the magnitude of the particle's linear momentum. The longest wavelength will then be obtained from the smallest mass of matter. Hence lithium which has the smallest mass will exhibit the longest DeBroglie wavelength
First, we write the reaction equation:
NiCO₃ + 2HBr → NiBr₂ + H₂CO₃
Now, writing this in ionic form:
NiCO₃ + 2H⁺ + 2Br⁻ → NiBr₂ + 2H⁺ + CO₃⁻²
(NiCO₃ is insoluble so it does not dissociate in to ions very readily)
Overall equation:
NiCO₃ + 2Br⁻ → NiBr₂ + CO₃⁻²
Answer:
Have the same number of electrons in their outer energy levels
Explanation:
Elements in the same group have similar chemical properties because they have the same number of valence electron(s) in their outermost shell.
Chlorine and Iodine have similar chemical properties because they have the same number of valence electron in their outermost shell. This can be seen from their electronic configuration as shown below:
Cl (17) => 1s² 2s²2p⁶ 3s²3p⁵
I (53) => [Kr] 4d¹⁰ 5s²5p⁵
From the above illustration:
Outer shell of Cl (3s²3p⁵) = 2 + 5 = 7 electrons
Outer shell of I (5s²5p⁵) = 2 + 5 = 7 electrons
Since they have the same number of valence electrons, therefore, they will have similar chemical properties.
Answer:
a. The original temperature of the gas is 2743K.
b. 20atm.
Explanation:
a. As a result of the gas laws, you can know that the temperature is inversely proportional to moles of a gas when pressure and volume remains constant. The equation could be:
T₁n₁ = T₂n₂
<em>Where T is absolute temperature and n amount of gas at 1, initial state and 2, final states.</em>
<em />
<em>Replacing with values of the problem:</em>
T₁n₁ = T₂n₂
X*7.1g = (X+300)*6.4g
7.1X = 6.4X + 1920
0.7X = 1920
X = 2743K
<h3>The original temperature of the gas is 2743K</h3><h3 />
b. Using general gas law:
PV = nRT
<em>Where P is pressure (Our unknown)</em>
<em>V is volume = 2.24L</em>
<em>n are moles of gas (7.1g / 35.45g/mol = 0.20 moles)</em>
R is gas constant = 0.082atmL/molK
And T is absolute temperature (2743K)
P*2.24L = 0.20mol*0.082atmL/molK*2743K
<h3>P = 20atm</h3>
<em />