<span>When an ice cube is placed on a kitchen counter, heat will flow from the ice cube to the counter, causing the molecules in the counter to move more slowly. The molecules of the counter move more slowly because the heat transferred to them from the ice has reduced their kinetic energy.</span>
Answer:
3-methylthiophene > thiophene > benzene > 2-methylfuran
Explanation:
Primarily, five membered heterocyclic aromatic rings undergo nitration at carbon-2. This is because, nitration at carbon-2 leads to the formation of three resonance structures while attack at carbon-3 yields only two resonance structures, hence it is less stabilized.
The presence of a methyl group which donates electrons promotes the stabilization of the cation formed in the nitration of 3-methylthiophene.
2-methylfuran is the least reactive towards nitration because the 2-position has been blocked by a methyl group.
The ore contains 55.4% calcium phosphate (related to the mineral apatite) so the amount of Ca3(PO4)2 is 55.4%x=1000g so x=1000/0.554= 1.805kg. Now for the % of P in this amount of calcium phosphate, use all the masses of the elements in Ca3PO4= Ca=40.078 x 3= 120.23 and (PO4)2= (30.974+64)2=189.95 (NB oxygen is 16 mass x 4 =64) so the total mass is 310.2 and we have 61.95 of P (Pmass x 2) so 61.95/3102.= 0.19 or 19% P. So of the 1.805 x 0.19= 0.34kg of phosphorus.
Answer:
2.01
Explanation:
The effusion is the passage of the molecules by a small hole by a difference of pressure. By Graham's Law, the rate of the effusion is inversely proportional to the square of the molar mass of the compound. Thus,
rateHF/rateHBr = √MHBr /√MHF
MHBr = 81 g/mol
MHF = 20 g/mol
rateHF/rateHBr = √81/√20
rateHF/rateHBr = 2.01
Answer:
The mass of an average copper atom is 
Explanation:
Given:
The total mass of copper atoms, 
Number of atoms, 
Now, we are asked to find the mass of 1 copper atom.
We use unitary method to find the mass of 1 copper atom.
Mass of
atoms = m
∴ Mass of 1 atom = 
Plug in 63.5 for 'm',
for 'N' and simply.
Mass of 1 atom = 
Therefore, the mass of an average copper atom is 