Answer : The enthalpy change for the reaction is, 201.9 kJ
Explanation :
According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
According to this law, the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation. That means the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.
The balanced reaction of
will be,

The intermediate balanced chemical reaction will be,
(1)

(2)

(3)

(4)

Now we will multiply the reaction 1 by 2, revere the reaction 2, reverse and half the reaction 3 and 4 then adding all the equations, we get :
(1)

(2)

(3)

(4)

The expression for enthalpy of the reaction will be,



Therefore, the enthalpy change for the reaction is, 201.9 kJ
Atomic mass Ni = 58.69 a.m.u
58.69 g ----------------- 6.02x10²³ atoms
?? g --------------------- 7.5x10¹⁵ atoms
58.69x (7.5x10¹⁵) / 6.02x10²³
=> 7.31x10⁻⁷ g
The important thing in this question is the unit. The mass equals density * volume. 3.1 L = 3.1 * 10^3 cm3. So the mass is 3.193*10^3 g. 1 pound = 453.95 g. So the answer is 7.04 pounds.
Answer:
Option B
Explanation:
We will check the solubility graph for potassium nitrate, KNO
3. Based on the graph it can be said that the temperature of solution when 130 grams of KNO3 dissolves in 100 grams of water is near to 65 degree Celsius. Now if three grams of solute is increased then the temperature of the solution will increase by a degree or so and hence the most probable temperature would be 68 degree Celsius.
Hence, option B is correct