PH is calculated using <span>Handerson- Hasselbalch equation,
pH = pKa + log [conjugate base] / [acid]
Conjugate Base = Acetate (CH</span>₃COO⁻)
Acid = Acetic acid (CH₃COOH)
So,
pH = pKa + log [acetate] / [acetic acid]
We are having conc. of acid and acetate but missing with pKa,
pKa is calculated as,
pKa = -log Ka
Putting value of Ka,
pKa = -log 1.76 × 10⁻⁵
pKa = 4.75
Now,
Putting all values in eq. 1,
pH = 4.75 + log [0.172] / [0.818]
pH = 4.072
The answer to this question would be: <span>thermal metamorphism
</span>
Metamorphism is a change in the mineral texture without causing the rock to become liquid/magma. In this case, the metamorphic change to the rock is caused by the heat energy or thermal energy of the magma. This kind of mechanism is also called contact mechanism as the thermal energy is transferred by contact so this question option is a bit ambiguous.
N_2 (g) + 3H_2 (g) rightarrow 2NH_3 (g) volume of H_2 = 32.44 At STP 1 mole of H_2 = 22.4L ? mole of H_2 = 32.4L therefore moles of H_2
Answer:
0.1 M
Explanation:
The overall balanced reaction equation for the process is;
IO3^- (aq)+ 6H^+(aq) + 6S2O3^2-(aq) → I-(aq) + 3S4O6^2-(aq) + 3H2O(l)
Generally, we must note that;
1 mol of IO3^- require 6 moles of S2O3^2-
Thus;
n (iodate) = n(thiosulfate)/6
C(iodate) x V(iodate) = C(thiosulfate) x V(thiosulfate)/6
Concentration of iodate C(iodate)= 0.0100 M
Volume of iodate= V(iodate)= 26.34 ml
Concentration of thiosulphate= C(thiosulfate)= the unknown
Volume of thiosulphate=V(thiosulfate)= 15.51 ml
Hence;
C(iodate) x V(iodate) × 6/V(thiosulfate) = C(thiosulfate)
0.0100 M × 26.34 ml × 6/15.51 ml = 0.1 M