Answer:
0.192 mol.
Explanation:
- To calculate the no. of moles of a substance (n), we use the relation:
<em>n = mass / molar mass.</em>
mass of AsH₃ = 15.0 g.
molar mass of AsH₃ = 77.95 g/mol.
∴ The number of moles in 15.0 g AsH₃ = mass / molar mass = (15.0 g) / (77.95 g/mol) = 0.192 mol.
<h3>
Answer:</h3>
19.3 g/cm³
<h3>
Explanation:</h3>
Density of a substance refers to the mass of the substance per unit volume.
Therefore, Density = Mass ÷ Volume
In this case, we are given;
Mass of the gold bar = 193.0 g
Dimensions of the Gold bar = 5.00 mm by 10.0 cm by 2.0 cm
We are required to get the density of the gold bar
Step 1: Volume of the gold bar
Volume is given by, Length × width × height
Volume = 0.50 cm × 10.0 cm × 2.0 cm
= 10 cm³
Step 2: Density of the gold bar
Density = Mass ÷ volume
Density of the gold bar = 193.0 g ÷ 10 cm³
= 19.3 g/cm³
Thus, the density of the gold bar is 19.3 g/cm³
Anna lives in a city that is part of the tropical climate types. It has a constantly warm weather, and thus higher humidity, and according to the annual rainfall, it is most probably a rainfall that appears seasonally, not throughout the whole year.
Tim, on the other hand, lives in a city that is part of the dry climate types. It is most probably a place that is deep into the mainland, like the cold deserts of Central Asia, where the temperatures in the summer are high, and in winter are very low. Because of the distance from the sea, the rainfall doesn't reach this places, so they are very dry, and only have symbolic amount of annual rainfall.
Answer:
sodium has got ionic bonds that are weak
compared to hydrogen covalent bonds that are strong