We can solve this without a concrete formula through dimensional analysis. This works by manipulating the units such that you end up with the unit of the final answer. Manipulate them by cancelling units that appear both in the numerator and denominator side. As a result, we must be left with the units of g. The current in A or amperes is equivalent to amount of Coulombs per second. Since this involves Coulombs, we will use the Faraday's constant which is 96,500 C/mol electron. The reaction is:
Cr³⁺(aq) + 3e⁻ --> Cr(s)
This means that for every 3 moles of electron transferred, 1 mole of Chromium metal is plated. The molar mass of Cr: 52 g/mol. The solution is as follows:
Mass of Chromium metal = (8 C/s)(60 s/1 min)(160 min)(1 mol e⁻/96,500 C)(1 mol Cr/3 mol e)(52 g/mol)
<em>Mass of Chromium metal = 13.79 g</em>
Answer:
Following are the answer to this question:
Explanation:
In the given question information is missing, that is equation which can be defined as follows:

- Growing temperatures may change its connection to just the way which consumes thermal energy in accordance with Le chatelier concepts Potential connection is endothermic. Answer: shifts to the right
-
Kc are described as a related to the concentration by the intensity of both the reaction for each phrase which reaches a power equal towards its stoichiometric equation coefficient Kc = \frac{product}{reactant}
It increases [product] but reduces [reactant] Therefore, Kc increases
A) 5.2 x 10^2
B) 86.
C) 6.4 x 10^3
D) 5.0
E) 22.
F) 0.89
Specific heat capacity is the required amount of heat per unit of mass in order to raise teh temperature by one degree Celsius. It can be calculated from this equation: H = mCΔT where the H is heat required, m is mass of the substance, ΔT is the change in temperature, and C is the specific heat capacity.
H = m<span>CΔT
2501.0 = 0.158 (C) (61.0 - 32.0)
C = 545.8 J/kg</span>·°C