Answer:
ΔH°c = -2219.9 kJ
Explanation:
Let's consider the combustion of propane.
C₃H₈(g) + 5 O₂(g) ⟶ 3 CO₂(g) + 4 H₂O(l)
We can find the standard enthalpy of the combustion (ΔH°c) using the following expression.
ΔH°c = [3 mol × ΔH°f(CO₂(g)) + 4 mol × ΔH°f(H₂O(l))] - [1 mol × ΔH°f(C₃H₈(g)) + 5 mol × ΔH°f(O₂(g))]
ΔH°c = [3 mol × (-393.5 kJ/mol) + 4 mol × (-285.8 kJ/mol)] - [1 mol × (-103.8 kJ/mol) + 5 mol × (0 kJ/mol)]
ΔH°c = -2219.9 kJ
Answer:
The time required for the coating is 105 s
Explanation:
Zinc undergoes reduction reaction and absorbs two (2) electron ions.
The expression for the mass change at electrode
is given as :

where;
M = molar mass
Z = ions charge at electrodes
F = Faraday's constant
I = current
A = area
t = time
also;
=
; replacing that into above equation; we have:
---- equation (1)
where;
A = area
d = thickness
= density
From the above equation (1); The time required for coating can be calculated as;
![[ \frac{20 cm^2 *0.0025 cm*7.13g/cm^3}{65.38g/mol}*2 \frac{moles\ of \ electrons}{mole \ of \ Zn} * 9.65*10^4 \frac{C}{mole \ of \ electrons } ] = (20 A) t](https://tex.z-dn.net/?f=%5B%20%5Cfrac%7B20%20cm%5E2%20%2A0.0025%20cm%2A7.13g%2Fcm%5E3%7D%7B65.38g%2Fmol%7D%2A2%20%5Cfrac%7Bmoles%5C%20of%20%5C%20electrons%7D%7Bmole%20%5C%20of%20%5C%20Zn%7D%20%2A%209.65%2A10%5E4%20%5Cfrac%7BC%7D%7Bmole%20%5C%20of%20%5C%20electrons%20%7D%20%20%5D%20%3D%20%2820%20A%29%20t)

= 105 s
Answer:
The answer to your question is below
Explanation:
There are two kinds of mixtures
- Homogeneous is a mixture of two or more elements or compounds and its components can not be distinguished visually.
- Heterogeneous is a mixture of two or more elements or compounds and its components can be distinguished visually.
a cup of tea and sugar homogeneous
peanuts and almonds mixed together in a bowl heterogeneous
a bucket full of sand and gravel heterogeneous
food coloring dissolved in water homogeneous
The properties of the atomic orbital are actually
dependent on the quantum numbers.
size of atomic orbital: governed by the principal quantum
number (n)
shape of atomic orbital: governed by the angular momentum
quantum number (l)
orientation in space: governed by the magnetic quantum
number (ml)
Since we are asked about the shape, hence the correct answer
is:
angular momentum quantum number (l)