Answer: The molar concentration of sulfuric acid in the original sample is 1.943 M
Explanation:
To calculate the molarity of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is NaOH.
We are given:

Putting values in above equation, we get:


Now to calculate the molarity of original solution:


Thus the molar concentration of sulfuric acid in the original sample is 1.943 M
Answer : The volume of solution will be 2.96 liters.
Explanation :
Molarity : It is defined as the number of moles of solute present in one liter of volume of solution.
Formula used :

In this question, the solute is NaF.
Now put all the given values in this formula, we get:



Therefore, the volume of solution will be 2.96 liters.
Full Question:
A flask containing 420 Ml of 0.450 M HBr was accidentally knocked to the floor.?
How many grams of K2CO3 would you need to put on the spill to neutralize the acid according to the following equation?
2HBr(aq)+K2CO3(aq) ---> 2KBr(aq) + CO1(g) + H2O(l)
Answer:
13.1 g K2CO3 required to neutralize spill
Explanation:
2HBr(aq) + K2CO3(aq) → 2KBr(aq) + CO2(g) + H2O(l)
Number of moles = Volume * Molar Concentration
moles HBr= 0.42L x .45 M= 0.189 moles HBr
From the stoichiometry of the reaction;
1 mole of K2CO3 reacts with 2 moles of HBr
1 mole = 2 mole
x mole = 0.189
x = 0.189 / 2 = 0.0945 moles
Mass = Number of moles * Molar mass
Mass = 0.0945 * 138.21 = 13.1 g
Answer:
V¹N²= V²N²
here V¹= ?
N¹= 6.00
V²= 175ml
M²= 0.2M
So V¹= (V²N²)/N² = (175 x 0.2)/6
V¹ = 5.83 ml
Explanation:
Therefore diluting 5.83 ml of 6.00M NaOH to 175 m l ,we get 0.2M Solution.