A significant figure is every symbol that made the number itself.
In this case, the number 40.00 has four figures but only two of them are significant 40, this is because you haven't got any more decimals than the first zero.
If you have a case with zeros in front, you take to the first non zero digits.
For example, 0.071004 you wold express as 0.071 and those 7, and 1 are the significant ones.
In alkene if two substituent and hydrogen are attached in the isomer may be cis or trans. When two or more substitution are attached to an alkene the isomer may be Z or E.All cis are Z isomer. The structure of (Z)-3-methy-3-heptene is as the following attachment
<span>BaCl2+Na2SO4---->BaSO4+2NaCl
There is 1.0g of BaCl2 and 1.0g of Na2SO4, which is the limiting reagent?
"First convert grams into moles"
1.0g BaCl2 * (1 mol BaCl2 / 208.2g BaCl2) = 4.8 x 10^-3 mol BaCl2
1.0g Na2SO4 * (1 mol Na2SO4 / 142.04g Na2SO4) = 7.0 x 10^-3 mol Na2SO4
(7.0 x 10^-3 mol Na2SO4 / 4.8 x 10^-3 mol BaCl2 ) = 1.5 mol Na2SO4 / mol BaCl2
"From this ratio compare it to the equation, BaCl2+Na2SO4---->BaSO4+2NaCl"
The equation shows that for every mol of BaCl2 requires 1 mol of Na2SO4. But we found that there is 1.5 mol of Na2SO4 per mol of BaCl2. Therefore, BaCl2 is the limiting reagent.</span>
First, you must convert 7.68cal/sec to cal/min. To do so, multiply 7.68x60(seconds, thus making a minute). 7.68x60=460.8
Next, we must convert 460.8 cal to kcal. To do so, divide 460.8 by 1000 (460.8/1000). The result is .4608 kcal/min
Answer:
<u />
- <u>There are 0.041 g of NH₃ in the same number of molecules as in 0.35 g of SF₆.</u>
<u />
Explanation:
Using the molar mass of the chemical formula SF₆ you can find the number of moles of molecules in 0.35 g of such substance. Then, using the molar mass of NH₃, you can find mass in grams corresponding to the same number of molecules.
<u>1. Find the molar mass of SF₆:</u>
Atom atomic mass number of atoms total mass in 1 mole
S 32.065 g/mol 1 32.065 g
F 18.998 g/mol 6 6 × 18.998 = 113.988 g
=====================
molar mass of SF₆ = 146.053 g/mol
<u>2. Find the number of moles in 0.35 g of SF₆:</u>
- number of moles = mass in grams / molar mass
- number of moles = 0.35 g / 146.053 g / mol = 0.0024 mol
<u>3. Find the molar mass of NH₃:</u>
Atom atomic mass number of atoms total mass 1 mole
N 14.007 g/mol 1 14.007 g
H 1.008 g/mol 3 3 × 1.008 g = 113.988 g
=====================
molar mass of NH₃ = 17.031 g/mol
<u />
<u>4. Find the mass in 0.0024 mol of NH₃:</u>
- mass in grams = number of moles × molar mass
- mass = 0.0024 mol × 17.031 g/mol ≈ 0.041 grams
<u>5. Conclusion: </u>
There are 0.041 g of NH₃ in the same number of molecules as in 0.35 g of SF₆.