answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mario62 [17]
1 year ago
10

How many grams of NH3 are needed to provide the same number of molecules as in 0.35 g of SF6 ?

Chemistry
1 answer:
Strike441 [17]1 year ago
6 0

Answer:

<u />

  • <u>There are 0.041 g of NH₃ in the same number of molecules as in 0.35 g of SF₆.</u>

<u />

Explanation:

Using the molar mass of the chemical formula SF₆ you can find the number of moles of molecules in 0.35 g of such substance. Then, using the molar mass of NH₃, you can find mass in grams corresponding to the same number of molecules.

<u>1. Find the molar mass of SF₆:</u>

Atom   atomic mass          number of atoms   total mass in 1 mole

S           32.065 g/mol                     1                                       32.065 g

F            18.998 g/mol                     6                 6 × 18.998 = 113.988 g

                                                                               =====================

                                                          molar mass of SF₆ =    146.053 g/mol

<u>2. Find the number of moles in 0.35 g of SF₆:</u>

  • number of moles = mass in grams / molar mass
  • number of moles = 0.35 g / 146.053 g / mol = 0.0024 mol

<u>3. Find the molar mass of NH₃:</u>

Atom   atomic mass          number of atoms   total mass 1 mole                

N           14.007 g/mol                     1                                       14.007 g

H             1.008 g/mol                    3               3 × 1.008 g = 113.988 g

                                                                               =====================

                                                         molar mass of NH₃ =    17.031 g/mol

<u />

<u>4. Find the mass in 0.0024 mol of NH₃:</u>

  • mass in grams = number of moles × molar mass

  • mass = 0.0024 mol × 17.031 g/mol ≈ 0.041 grams

<u>5. Conclusion: </u>

There are 0.041 g of NH₃ in the same number of molecules as in 0.35 g of SF₆.

You might be interested in
How did Mendeleev feel about Russian science education when he came back from Germany
krok68 [10]

As he began to teach inorganic chemistry, Mendeleev could not find a textbook that met his needs. Since he had already published a textbook on organic chemistry in 1861 that had been awarded the prestigious Demidov Prize, he set out to write another one. The result was Osnovy khimii (1868–71; The Principles of Chemistry), which became a classic, running through many editions and many translations. When Mendeleev began to compose the chapter on the halogen elements (chlorine and its analogs) at the end of the first volume, he compared the properties of this group of elements to those of the group of alkali metals such as sodium. Within these two groups of dissimilar elements, he discovered similarities in the progression of atomic weights, and he wondered if other groups of elements exhibited similar properties. After studying the alkaline earths, Mendeleev established that the order of atomic weights could be used not only to arrange the elements within each group but also to arrange the groups themselves. Thus, in his effort to make sense of the extensive knowledge that already existed of the chemical and physical properties of the chemical elements and their compounds, Mendeleev discovered the periodic law.

5 0
2 years ago
Read 2 more answers
What is the molarity of a solution that contains 2.35 g of nh3 in 0.0500 l of solution?
tankabanditka [31]
The molarity is the number of moles in 1 L of the solution. 
The mass of NH₃ given - 2.35 g
Molar mass of NH₃ - 17 g/mol
The number of NH₃ moles in 2.35 g - 2.35 g / 17 g/mol = 0.138 mol
The number of moles in 0.05 L solution - 0.138 mol 
Therefore number of moles in 1 L - 0.138 mol / 0.05 L x 1L = 2.76 mol
Therefore molarity of NH₃ - 2.76 M
3 0
1 year ago
Read 2 more answers
Phosphorous acid, H3PO3(aq), is a diprotic oxyacid that is an important compound in industry and agriculture. K pKa1 K pKa2 1.30
FrozenT [24]

Answer:

* Before addition of any KOH:

pH = 0,0301

*After addition of 25.0 mL KOH:

pH = 1,30

*After addition of 50.0 mL KOH:

pH = 2,87

*After addition of 75.0 mL KOH:

pH = 6,70

*After addition of 100.0 mL KOH:

pH = 10,7

Explanation:

H₃PO₃ has the following equilibriums:

H₃PO₃ ⇄ H₂PO₃⁻ H⁺

k = [H₂PO₃⁻] [H⁺] / [H₃PO₃] k = 10^-(1,30) <em>(1)</em>

H₂PO₃⁻ ⇄ HPO₃²⁻ + H⁺

k = [HPO₃²⁻] [H⁺] / [H₂PO₃⁻] k = 10^-(6,70) <em>(2)</em>

Moles of H₃PO₃ are:

0,0500L×(1,8mol/L) = 0,09 moles of H₃PO₃

* Before addition of any KOH:

Using (1), moles in equilibrium are:

H₃PO₃: 0,09-x

H₂PO₃⁻: x

H⁺: x

Replacing:

10^{-1.30} = \frac{x^2}{0.09-x}

4.51x10⁻³ - 0.050x -x² = 0

The right solution of x is:

x = 0.0466589

As volume is 0,050L

[H⁺] = 0.0466589moles / 0,050L = 0,933M

As pH = -log [H⁺]

<em>pH = 0,0301</em>

*After addition of 25.0 mL KOH:

0,025L×1,8M = 0,045 moles of KOH that reacts with H₃PO₃ thus:

KOH + H₃PO₃ → H₂PO₃⁻ + H₂O

That means moles of KOH will be the same of H₂PO₃⁻ and moles of H₃PO₃ are 0,09moles - 0,045moles = 0,045moles

Henderson-Hasselbalch formula is:

pH = pka + log₁₀ [A⁻] /[HA]

Where A⁻ is H₂PO₃⁻ and HA is H₃PO₃.

Replacing:

pH = 1,30 + log₁₀ [0,045mol] / [0,045mol]

<em>pH = 1,30</em>

*After addition of 50.0 mL KOH:

The addition of 50.0 mL KOH consume all H₃PO₃. Thus, in the solution you will have just H₂PO₃⁻. Thus, moles in solution for the equilibrium will be:

H₂PO₃⁻: 0,09-x

HPO₃²⁻: x

H⁺: x

Replacing:

10^{-6.70} = \frac{x^2}{0.09-x}

1.8x10⁻⁸ - 2x10⁻⁷x - x² = 0

The right solution of x is:

x = 0.000134064

As volume is 50,0mL + 50,0mL = 100,0mL

[H⁺] = 0.000134064moles / 0,100L = 1.34x10⁻³M

As pH = -log [H⁺]

<em>pH = 2,87</em>

*After addition of 75.0 mL KOH:

Applying Henderson-Hasselbalch formula you will have 0,045 moles of both H₂PO₃⁻ HPO₃²⁻ and pka: 6,70:

pH = 6,70 + log₁₀ [0,045mol] / [0,045mol]

<em>pH = 6,70</em>

*After addition of 100.0 mL KOH:

You will have just 0,09moles of HPO₃²⁻, the equilibrium will be:

HPO₃²⁻ + H₂O ⇄ H₂PO₃⁻ + OH⁻ with kb = kw/ka = 1x10⁻¹⁴/10^-(6,70) = 5,01x10⁻⁸

kb = [H₂PO₃⁻] [OH⁻] / [HPO₃²⁻]

Moles are:

H₂PO₃⁻: x

OH⁻: x

HPO₃²⁻: 0,09-x

Replacing:

5.01x10^{-8} = \frac{x^2}{0.09-x}

4.5x10⁻⁹ - 5.01x10⁻⁸x - x² = 0

The right solution of x is:

x = 0.000067057

As volume is 50,0mL + 100,0mL = 150,0mL

[OH⁻] = 0.000067057moles / 0,150L = 4.47x10⁻⁴M

As pH = 14-pOH; pOH = -log [OH⁻]

<em>pH = 10,7</em>

<em></em>

I hope it helps!

6 0
2 years ago
A 520-gram sample of seawater contains 0.317 moles of NaCl. What is the percent composition of NaCl in the water?
Volgvan

Answer:

c

Explanation:

8 0
1 year ago
A student measures a volume as 25 mL, whereas the correct volume is 23 mL. What is the percent error? * O 8.7% O 0.92% O 0.087%
quester [9]

Answer:

no u

Explanation:

5 0
1 year ago
Read 2 more answers
Other questions:
  • What is the advantage of having large vertebrae at the base of the vertebral column?
    14·1 answer
  • given that the molar mass of Na2SO4 × nH2O is 322.1 g/mol calculate the number of moles of water in this hydrate
    11·1 answer
  • at what temperature will a fixed amount of gas with a volume of 175 L at 15 degrees celsius and 760mmHg occupy a volume of 198L
    14·2 answers
  • Complete the following paragraph to describe how the electrostatic forces in salt compounds can be overcome by interactions betw
    9·1 answer
  • Define a function ComputeGasVolume that returns the volume of a gas given parameters pressure, temperature, and moles. Use the g
    5·1 answer
  • . The Henry's law constant for helium gas in water at 30 ∘C is 3.7×10−4M/atm; the constant for N2 at 30 ∘C is 6.0×10−4M/atm. a.
    15·1 answer
  • A 0.100 m solution of which one of the following solutes will have the highest vapor pressure? A 0.100 m solution of which one o
    9·1 answer
  • You will be using the observations given in the scenarios i - vi below to determine which of the following is true for G (a - c)
    9·1 answer
  • Predict your observation if a magnesium ribbon is put in potassium hydroxide solution and tested with a lighted wooden splinter.
    9·1 answer
  • Formulating an Investigative Question In this experiment, you will use a track and a toy car to explore the concept of movement.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!