answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jek_recluse [69]
2 years ago
5

The complex ion, [ni(nh3)6] 2+, has a maximum absorption near 580 nm. calculate the crystal field splitting energy (in kj/mol) f

or this ion. 292 kj/mol 485 kj/mol 206 kj/mol 343 kj/mol 114 kj/mol
Chemistry
1 answer:
Wewaii [24]2 years ago
5 0
In given data:
maximum absorption wavelength λ = 580 nm = 580 x 10⁻⁹ m
write the equation to find the crystal field splitting energy:
E = hC / λ 
Here, E is the crystal field splitting energy, h = 6.63 x 10⁻³⁴ J.sec is Planck's constant and C = 3 x 10⁸ m/sec is speed of light. 
substitute in the equation above:
E = (6.64 x 10⁻³⁴ x 3 x 10⁸) / (580 x 10⁻⁹) = 3.43 x 10⁻¹⁹J
This crystal field splitting energy is for 1 ion.
Number of atoms in one mole, NA = 6.023 x 10²³ 
to calculate the crystal field splitting energy for one mole:
E(total) = E x NA
             = (3.43 x 10⁻¹⁹) x (6.023 x 10²³) = 206 kJ/ mole



 
You might be interested in
A 15.0-L rigid container was charged with 0.500 atm of kryp‑ ton gas and 1.50 atm of chlorine gas at 350.8C. The krypton and chl
Alecsey [184]

Answer: 32.94 g

Explanation: It's stoichiometry problem so balanced equation is required. The balanced equation is given below:

Kr+2Cl_2\rightarrow KrCl_4

From the balanced equation, krypton and chlorine react in 1:2 mol ratio. We will calculate the moles of each reactant gas using ideal gas law equation(PV = nRT) and then using mol ratio the limiting reactant is figured out that helps to calculate the amount of the product formed.

for Krypton, P = 0.500 atm and for chlorine, P = 1.50 atm

V = 15.0 L

T = 350.8 + 273 = 623.8 K

For krypton, n=\frac{0.500*15.0}{0.0821*623.8}

n = 0.146 moles

for chlorine, n=\frac{1.50*15.0}{0.0821*623.8}

n = 0.439

From the mole ratio, 1 mol of krypton reacts with 2 moles of chlorine. So 0.146 moles of krypton will react with 2 x 0.146 = 0.292 moles of chlorine.

Since 0.439 moles of chlorine are available, it is present in excess and hence the limiting reactant is krypton.

So, the amount of product formed is calculated from moles of krypton.

Molar mass of krypton tetrachloride is 225.61 gram per mol.

There is 1:1 mol ratio between krypton and krypton tetrachloride.

0.146molKr(\frac{1molKrCl_4}{molKr})(\frac{225.61gKrCl_4}{1molKrCl_4})

= 32.94 g of KrCl_4

So, 32.94 g of the product will form.

5 0
2 years ago
Jamal wants to make a model of a hill near his house to test the way the slope affects how rain runs down the hill. Which type o
Nikitich [7]

a scale-model mound made of the same materials that make the real hill

4 0
2 years ago
Read 2 more answers
A student measures a volume as 25 mL, whereas the correct volume is 23 mL. What is the percent error? * O 8.7% O 0.92% O 0.087%
quester [9]

Answer:

no u

Explanation:

5 0
2 years ago
Read 2 more answers
Q1) A vapor-compression refrigeration system operates on the cycle of Fig. 9.1. The refrigerant is 1,1,1,2-Tetrafluoroethane. Gi
hoa [83]

Answer:

i)   0.5071 (kg/s)

ii)  -1407.1 kj/kg

iii)  204.05 Kw

iv)  5.881

v)    9.238

Explanation:

Given Data:

evaporation temperature ( T ) = 4°c = 277.15 K

Condensation Temperature ( T ) = 34°c = 307.15 K

<em>n</em> ( compressor efficiency ) = 0.76

refrigeration rate = 1200 kJ.s^-1

i) determine the circulation rate of the refrigerant

m = \frac{Q}{H2 - H1}  = \frac{Q}{H2 - H4\\}  ------- 1

Q = 1200 Kj.s^-1

H2 = entropy at step 2 = 2508.9 (kJ / kg ) ( gotten from Table F )

H4 = entropy at step 4 = 142.4 ( kJ/ kg )

back to equation 1

m ( circulation rate of refrigerant ) = 0.5071 (kg/s)

ii) heat transfer rate in the condenser

Q = m ( H4 - H3 )

    = 0.5071 ( 142.4 - 2911.27 )

    = -1407.1 kj/kg

where H3 = H2 + ΔH23 = 2911.27 (kj/kg) ( as calculated )

iii) power requirement

w = m * ΔH23

   = 0.5071 (kg/s) * 402.37 (kj/kg) =  204.05 Kw

where: ΔH23 = \frac{H'3 - H2 }{0.76} = \frac{2814.7-2508.9}{0.76} = 402.37 (kj/kg)

iv) coefficient of performance of a cycle

W = Qc / w

  = 1200 Kj.s^-1/ 204.05 kw

  = 5.881

v) coefficient of performance of a Carnot refrigeration cycle

w_{carnot} = \frac{T2}{T4 - T2}

            =  277.15 / ( 307.15 - 277.15 )

            = 9.238

4 0
2 years ago
A gas cylinder filled with nitrogen at standard temperature and pressure has a mass of 37.289 g. The same container filled with
andrew-mc [135]

Answer:

Molar mass = 3.9236 g/mol ≅ 4 g/mol

This corresponds to Helium gas.

Explanation:

Let the moles of nitrogen gas = x moles

Moles of carbon dioxide = x moles ( As both are filled at same temperature and pressure conditions )

Given:

Mass_{Container}+Mass_{Nitrogen\ gas}=37.289\ g

Molar mass of nitrogen gas, N_2 = 28.014 g/mol

The formula for the calculation of moles is shown below:

moles = \frac{Mass\ taken}{Molar\ mass}

Thus,

x\ moles= \frac{Mass}{28.014\ g/mol}

Mass of nitrogen gas = 28.014x g

So,

Let, Mass_{Container}=y

y+28.014x=37.289

Similarly,

Mass_{Container}+Mass_{Carbon\ dioxide\ gas}=37.440\ g

Molar mass of nitrogen gas, CO_2 = 44.01 g/mol

The formula for the calculation of moles is shown below:

moles = \frac{Mass\ taken}{Molar\ mass}

Thus,

x\ moles= \frac{Mass{44.01\ g/mol}

Mass of nitrogen gas = 44.01x g

So,

y+44.01x=37.440

Solving the two equations, we get :

Mass_{Container}=y=37.025\ g

x = 0.00943 moles

Thus, Given:

Mass_{Container}+Mass_{Unknown\ gas}=37.062\ g

37.025\ g+Mass_{Unknown\ gas}=37.062\ g

Mass of the gas = 0.037 moles

Moles = 0.00943 moles

The formula for the calculation of moles is shown below:

moles = \frac{Mass\ taken}{Molar\ mass}

Thus,

0.00943\ moles= \frac{0.037\ g}Molar mass}

Molar mass = 3.9236 g/mol ≅ 4 g/mol

This corresponds to Helium gas.

7 0
2 years ago
Other questions:
  • Find the ions in the periodic table that have an electron configuration of nd8 (n = 3, 4, 5...).
    11·2 answers
  • A 5 mole sample of liquid acetone is converted to a gas at 75.0°C. If 628 J are required to raise the temperature of the liquid
    12·1 answer
  • A flexible container is put in a deep freeze. Its original volume is 3.00 m3 at 25.0°C. After the container cools, it has shrunk
    12·1 answer
  • The salt sodium sulfate, Na2SO4, can be formed by a reaction between...
    9·1 answer
  • What is the number of moles of <br> 0.0960g of H2SO4
    10·1 answer
  • A compound is found to have a molar mass of 598 g/mol. if 35.8 mg of the compound is dissolved in enough water to make 175 ml of
    10·1 answer
  • For each pair of gases, select the one that most likely has the highest rate of effusion. Use the periodic table if necessary. O
    5·2 answers
  • Given the following data, determine the rate constant of the reaction 2NO(g) +Cl2(g) --&gt; 2NOCl(g) Experiment [NO] (M) [Cl2] (
    12·1 answer
  • The density of honey is 1.42 g/mL. If you poured honey into a glass of water, would it sink to the bottom or float on top? Expla
    11·1 answer
  • The heat capacity of solid iron is 0.447 J/gËC. If the same quantity of energy were transferred to a 450 g chunk of iron at 20ËC
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!