1) Balanced chemical reaction:
2H2 + O2 -> 2H20
Sotoichiometry: 2 moles H2: 1 mol O2 : 2 moles H2O
2) Reactant quantities converted to moles
H2: 5.00 g / 2 g/mol = 2.5 mol
O2: 50.0 g / 32 g/mol = 1.5625 mol
Limitant reactant: H2 (because as per the stoichiometry it will be consumed with 1.25 mol of O2).
3) Products
H2 totally consumed -> 0 mol at the end
O2 = 1.25 mol consumed -> 1.5625 mol - 1.25 mol = 0.3125 mol at the end
H2O: 2.5 mol H2 produces 2.5 mol H2O -> 2.5 mol at the end.
Total number of moles: 0.3125mol + 2.5 mol = 2.8125 mol
4) Pressure
Use pV = nRT
n = 2.8125
V= 9 liters
R = 0.082 atm*lit/K*mol
T = 35 C + 273.15 = 308.15K
p = nRT/V = 7.9 atm
The question is incomplete, the complete question is;
The table above summarizes data given to a student to evaluate the type of change that took place when substance X was mixed with water. The student claimed that the data did not provide enough evidence to determine whether a chemical or physical change took place and that additional tests were needed. Which of the following identifies the best way to gather evidence to support the type of change that occurred when water and Xwere mixed?
A. Measuring the melting point of the mixture of water and X
B. Adding another substance to the mixture of water and X to see whether a solid forms
C Measuring and comparing the masses of the water, X, and the mixture of water and X
D Measuring the electrical conductivities of X and the mixture of water and X
Answer:
D Measuring the electrical conductivities of X and the mixture of water and X
Explanation:
Unfortunately, I am unable to reproduce the table here. However, from the table, the temperature of the of the mixture of the solid X and water was 101.6°C. This is above the boiling point of water and way below the temperature of the solid X.
This goes a long way to suggest that there was some kind of interaction between the water and X which accounted for the observed temperature of the system of X in water.
The only way we can be able to confirm if X actually dissolved in water is to measure the conductivity of the water. dissolved solids increase the conductivity of water.
The concentration of AlCl3 solution if 150 ml of the solution contains 550 mg of cl- ion is 0.0344 M
calculation
concentration = moles /volume in liters
volume in liters = 150 /1000= 0.15 L
number of moles calculation
write the equation for dissociation of Al2Cl3
that is AlCl3 ⇔ Al^3+ + 3 Cl ^-
find the moles of Cl^- formed
moles =mass/molar mass
mass in grams= 550/ 1000 =0.55 grams
molar mass of Cl^- =35.5 g/mol
moles is therefore= 0.55/35.5 =0.0155 moles
by use of mole ration betweem AlCl3 to Cl^- which is 1:3 the moles of AlCl3 is =0.0155 x 1/3= 5.167 x10^-3 moles
concentration of AlCl3 is therefore= 5.167 x10^-3/ 0.15 =0.0344 M
Answer:
9
Explanation:
The structure of fluorophore used in the experiments has been drawn in the attachment. And from the drawing counting we can say that there are 9 sp2-hybridized carbon atoms present. Fiuorophores are a fluorescent chemical compound that can re-emit light upon light excitation. Normally used to produce absorbance and emission spectra.
Answer : 1721.72 g/qt are in 18.2 g/cL
Explanation :
As we are given: 18.2 g/cL
Now we have to convert 18.2 g/cL to g/qt.
Conversions used are:
(1) 1 L = 100 cL
(2) 1 L = 1000 mL
(3) 1 qt = 946 qt
The conversion expression will be:


Therefore, 1721.72 g/qt are in 18.2 g/cL