Sr(s)+Mg²+(aq)→Sr²+(aq)+Mg(s)
Number of e-'s transfered are, n=2. Equilibrium constant,
K=2.69×10∧12
ΔG=-2.303RT logK
R=gasconstant=8.314J/mol-k
T= temperature in K= 25 oC=25+273=298K
The value we get ΔG = -70922.3J. But ΔG = -nFE
n= number of e-'s transfered in the reaction =2
F= farady = 96500C
E=potential of the cell is what?
∴E = ΔG.nF
=-(-70922.3)/2×96500)
=0.367v.
The graph is needed to answer this question.
Solubility may increase or decrease with temperature depending on the properties of the solute and the solvent.
It is quite common that the solubility of the ionic compounds, like KBr, in water increases with temperature.
Use your solubility curve for the KBr and you wiil see a line that starts at a solubility a little greater than 50 grams of the salt in 100 grams of water for temperaute 0°C and increase linearly until almost 100 grams of the salt in 100 grams of water at 100°C.
So, in this case you can affirm that the solubility of KBr increases with the temperature.
Answer: the second option: the solubility increases.
Answer:
8608.18 balloons
Explanation:
Hello! Let's solve this!
Data needed:
Enthalpy of propane formation: 103.85kJ / mol
Specific heat capacity of air: 1.009J · g ° C
Density of air at 100 ° C: 0.946kg / m3
Density of propane at 100 ° C: 1.440kg / m3
First we will calculate the propane heat (C3H8)
3000g * (1mol / 44g) * (103.85kJ / mol) * (1000J / 1kJ) = 7.08068 * 10 ^ 6 J
Then we can calculate the mass of the air with the heat formula
Q = mc delta T
m = Q / c delta T = (7.08068 * 10 ^ 6 J) / (1.009J / kg ° C * (100-25) ° C) =
m = 93566.96kg
We now calculate the volume of a balloon.
V = 4/3 * pi * r ^ 3 = 4/3 * 3.14 * 1.4m ^ 3 = 11.49m ^ 3
Now we calculate the mass of the balloon
mg = 0.946kg / m3 * 11.49m ^ 3 = 10.87kg
The amount of balloons is
93566.96kg / 10.87kg = 8608.18 balloons
Answer:
frequency = 6.12× 10¹⁴ s⁻¹
Explanation:
Given data:
Wavelength = 4.90 ×10⁻⁷ m
Frequency = ?
Solution:
Formula:
<em>Speed of wave = frequency × wavelength</em>
Speed of wave = 3 × 10⁸ m/s
<em>Speed of wave = frequency × wavelength</em>
<em>frequency = Speed of wave/wavelength</em>
frequency <em>= </em>3 × 10⁸ m/s / 4.90 ×10⁻⁷ m
frequency = 0.612 × 10¹⁵ s⁻¹
frequency = 6.12× 10¹⁴ s⁻¹
The mass percent of potassium chloride is 1.386%
<u><em>calculation</em></u>
mass percent = actual mass/ Theoretical mass x 100
Actual mass = 9.35 g
Theoretical mass is calculated as below
Step 1 : write the equation for reaction
KCl + H₂O → KOH + HCl
Step 2: find the moles of H₂O
moles = mass÷ molar mass
The molar mass of H₂O = (2 x1 ) +(16) = 18 g/mol
moles is therefore = 162.98 g÷ 18 g/mol =9.054 moles
Step 3: use the mole ratio to determine the moles of KCl
KCl: H₂O is 1:1 therefore the moles of KCl is also = 9.054 moles
Step 4: find the theoretical mass of KCl
mass = moles x molar mass
from periodic table the molar mass of KCl = 39 +35.5 =74.5 g/mol
mass = 9.054 moles x 74.5 g/mol =674.5 g
Theoretical mass is therefore = 9.35 g/ 674.5 g x 100 = 1.386%