To find the number of moles of gas we can use the ideal gas law equation, we dont need to use the mass of gas given as we only have to find the number of moles
PV = nRT
P - pressure - 300.0 kPa
V - volume - 25.0 x 10⁻³ m³
n - number of moles
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature in Kelvin - 27 °C + 273 = 300 K
substituting these values in the equation
300.0 kPa x 25.0 x 10⁻³ m³ = n x 8.314 Jmol⁻¹K⁻¹ x 300 K
n = 3.01 mol
number of mols of gas - 3.01 mol
Answer: the answer is option (D). k[P]²[Q]
Explanation:
first of all, let us consider the reaction from the question;
2P + Q → 2R + S
and the reaction mechanism for the above reaction given thus,
P + P ⇄ T (fast)
Q + T → R + U (slow)
U → R + S (fast)
we would be applying the Rate law to determine the mechanism.
The mechanism above is a three step process where the slowest step seen is the rate determining step. From this, we can see that this slow step involves an intermediate T as reactant and is expressed in terms of a starting substance P.
It is important to understand that laws based on experiment do not allow for intermediate concentration.
The mechanism steps for the reactions in the question are given below when we add them by cancelling the intermediates on the opposite side of the equations then we get the overall reaction equation.
adding this steps gives a final overall reaction reaction.
2P + Q ------------˃ 2R + S
Thus the rate equation is given as
Rate (R) = K[P]²[Q]
cheers, i hope this helps
Explanation:
The given reaction equation will be as follows.

Now, number of atoms on reactant side are as follows.
Number of atoms on product side are as follows.
Therefore, this equation is balanced since atoms on both reactant and product sides are equal.
Thus, we can conclude that there is one sulfur atom in the products.
Answer: the mass number of the daugther atom is 232,
Explanation:
1) Alpha (α) decay is a nuclear reaction in which a nucleus (parent's nucleus) emits an alpha (α) particle and leads to a different atom (daughter atom).
2) The alpha (α) particle is a nucleus of helium atom, i,e, a nucleus with two protons and two neutrons. The symbol used for the α particles is <em>⁴₂He</em>, where the superscript 4 indicates the mass number (2 protons + 2 neutrons = mass number 4), and the subscript 2 indicates the atomic number (number of protons).
3) Then, to determine the mass number of the daughter atom you just need to do a mass number balance:
mass number of the parent atom = mass number of the daugther atom + mass number of the α particle.
The mass number of the radioactive (parent) atom is 90 protons + 142 neutrons = 232.
∴ 232 = x + 4 ⇒ x = 232 - 4 = 228 ← answer.
The full equation may help you to have a wider vision of the problem:
²³²₉₀ X → ⁴₂ He + ²²⁸₈₈ Y
Note this:
- 232 = 4 + 228 (this is a mass number balance)
- 90 = 2 + 88 (this is an atomic number balance)
- X is the parent atom, and Y is the daughter atom
- You can use a periodic table to determine the identity of the unknown atoms (using the atomic numbers).