Answer:
B) hyperbolic curve; saturated with substrate
Explanation:
Enzymatic kinetics studies the speed of enzyme catalyzed reactions. These studies provide direct information about the mechanism of the catalytic reaction and the specificity of the enzyme. The speed of a reaction catalyzed by an enzyme can be measured with relative ease, since in many cases it is not necessary to purify or isolate the enzyme. The measurement is always carried out under the optimal conditions of pH, temperature, presence of cofactors, etc., and saturating substrate concentrations are used. Under these conditions, the reaction rate observed is the maximum speed (Vmax). The speed can be determined either by measuring the appearance of the products or the disappearance of the reagents.
Following the rate of appearance of product (or disappearance of the substrate) as a function of time, the so-called reaction progress curve is obtained, or simply, the reaction kinetics. This curve is represented by a hyperbolic curve
Answer:
From highest to lowest:
butanol: 117.7 degree Celsius
butanone: 79.64 degree Celsius
diethyl ether: 34.6 degree Celsius
n-butane: -0.4 degree Celsius
Answer:
The specific heat of the alloy 
Explanation:
Mass of an alloy
= 25 gm
Initial temperature
= 100°c = 373 K
Mass of water
= 90 gm
Initial temperature of water
= 25.32 °c = 298.32 K
Final temperature
= 27.18 °c = 300.18 K
From energy balance equation
Heat lost by alloy = Heat gain by water
[
-
] =
(
-
)
25 ×
× ( 373 - 300.18 ) = 90 × 4.2 (300.18 - 298.32)

This is the specific heat of the alloy.
Answer:
Explanation:
1. Change object motion - unbalanced force
2. Push or pull - Balanced forces do not cause a change in motion. When balanced forces act on an object at rest, the object will not move. If you push against a wall, the wall pushes back with an equal but opposite force. Neither you nor the wall will move. Forces that cause a change in the motion of an object are unbalanced forces. So if object move it is unbalanced.
3. Have direction - unbalanced force
4. Do not change objects motion - balanced force
5. Net force does not =0 - unbalanced force
6.net force =0 - balanced force