The question is incomplete , complete question is:
Hydrogen, a potential future fuel, can be produced from carbon (from coal) and steam by the following reaction:

Note that the average bond energy for the breaking of a bond in CO2 is 799 kJ/mol. Use average bond energies to calculate ΔH of reaction for this reaction.
Answer:
The ΔH of the reaction is -626 kJ/mol.
Explanation:

We are given with:



ΔH = (Energies required to break bonds on reactant side) - (Energies released on formation of bonds on product side)



The ΔH of the reaction is -626 kJ/mol.
Answer:
Follows are the explanation to this question:
Explanation:
When the drug is negatively charged, its negative electrolyte is annihilated to just the positive electrode. It is enticed, and it may not have a picture showing the electrode, however, We suppose that electrodes from either side of a skin slice. Its negative electrode will bypass or push thru the skin if in front of the counter terminal this becomes a red-positive electrode.
Answer:
Mass of liquid B = 271.2 gram
Explanation:
Given:
Density of liquid A = 1000 kg/m³
Density of liquid B = 600 kg/m³
Density of mixture = 850 kg/m³
Mass of mixture = 1 kg
Assume:
Volume of liquid A = Va
Volume of liquid B = Vb
So,
Volume of mixture = Va + Vb
Mass of liquid A = 1000(Va)
Mass of liquid B = 600(Vb)
Mass of mixture = Mass of liquid A + Mass of liquid B
1 = 1000(Va) + 600(Vb)
Volume of mixture = 1 / 850
So,
(1/850) = Va + Vb
Vb = (1/850) - Va
1 = 1000(Va) + 600[(1/850) - Va]
Va = 7.25 × 10⁻⁴
Vb = (1/850) - Va
Vb = (1/850) - [7.25 × 10⁻⁴]
Vb = 4.25 × 10⁻⁴
Mass of liquid B = 600(Vb)
Mass of liquid B = 600(4.25 × 10⁻⁴)
Mass of liquid B = 271.2 gram
In, 1937 Lawrence, in operating his cyclotron, bombarded a molybdenum-96 foil with deuterium ions (2h), producing for the first time an element not found in nature. He was initially unaware that the radioactivity produced by the "bombarded foil" was not from molybdenum but from a new, artificial element. It was his cooperation with Italian-American physicist <span>Emilio Segrè </span>that allowed the new element to be discovered. The answer is Technetium: Tc
41.083 atm is the difference between the ideal pressure (as predicted by the ideal gas law) and the real pressure (as predicted by the van der Waals equation.
Explanation:
Data given for argon gas:
number of moles = 1 mole
volume = 0.5 L
Temperature = 19 degrees or 292.15 K
a= 1.345 (L2⋅atm)/mol2
b= 0.03219L/mol.
R = 0.0821
The real pressure equation given by Van der Waals equation:
P =( RT ÷ Vm-b) - a ÷ Vm^2
Putting the values in the equation:
P = (0.0821 x 292.15) ÷(0.5 - 0.03219) - 1.345÷ (0.5)^2
= 23.98÷0.4678 - 1.345 ÷0 .25
= 51.26 - 5.38
= 45.88 atm is the real pressure.
The pressure from the ideal gas law
PV =nRT
P =( 1 x 0.0821 x 292.15) ÷ 0.5
= 4.797 atm
the difference between the ideal pressure and real pressure is
Pressure by vander waal equation- Pressure by ideal gas law
45.88 - 4.797
= 41.083 atm.is the difference between the two.