Answer:
D
Explanation:
a precipitate is formed from a solution
Answer:
0.11 mol
Explanation:
<em>This is the chemical formula for acetic acid (the chemical that gives the sharp taste to vinegar): CH₃CO₂H. An analytical chemist has determined by measurements that there are 0.054 moles of oxygen in a sample of acetic acid. How many moles of hydrogen are in the sample?</em>
Step 1: Given data
- Formula of acetic acid: CH₃CO₂H
- Moles of oxygen in the sample of acetic acid: 0.054 moles
Step 2: Establish the appropriate molar ratio
According to the chemical formula of acetic acid, the molar ratio of H to O is 4:2.
Step 3: Calculate the moles of atoms of hydrogen
We will use the theoretical molar ratio for acetic acid.
0.054 mol O × (4 mol H/2 mol O) = 0.11 mol H
Answer:
sodium has got ionic bonds that are weak
compared to hydrogen covalent bonds that are strong
Answer:
pH=10.97
Explanation:
the solution of methyl amine with methylammonium chloride will make a buffer solution.
The pH of buffer solution can be obtained using Henderson Hassalbalch's equation, which is:
![pOH=pKb+log\frac{[salt]}{[base]}](https://tex.z-dn.net/?f=pOH%3DpKb%2Blog%5Cfrac%7B%5Bsalt%5D%7D%7B%5Bbase%5D%7D)
pH = 14- pOH
Let us calculate pOH

[Salt] = [methylammonium chloride] = 0.10 M (initial)
After adding base
![[salt] = \frac{molarityXvolume}{finalvolume}=\frac{0.1X20}{(20+50)}= 0.0286M](https://tex.z-dn.net/?f=%5Bsalt%5D%20%3D%20%5Cfrac%7BmolarityXvolume%7D%7Bfinalvolume%7D%3D%5Cfrac%7B0.1X20%7D%7B%2820%2B50%29%7D%3D%200.0286M)
[base] = [Methylamine]=0.10
After mixing with salt
![[base]= \frac{molarityXvolume}{finalvolume}=\frac{0.1X50}{(20+50)}= 0.0714M](https://tex.z-dn.net/?f=%5Bbase%5D%3D%20%5Cfrac%7BmolarityXvolume%7D%7Bfinalvolume%7D%3D%5Cfrac%7B0.1X50%7D%7B%2820%2B50%29%7D%3D%200.0714M)
pKb= -log[Kb]= 3.43
Putting values
pOH = ![3.43+log(\frac{[0.0286]}{0.0714}](https://tex.z-dn.net/?f=3.43%2Blog%28%5Cfrac%7B%5B0.0286%5D%7D%7B0.0714%7D)