Answer:
<h3>

</h3>
Explanation:
First balance the chemical equation:
⇄ 
two components are solid so these two will not exert any kind of pressure in the container so at equilibrium only CO2 will apply pressure on the container
Therefore only partial pressure of CO2 will be taken for the calculation of equilibrium pressure constant i.e. Kp
![K_p=[CO_2]](https://tex.z-dn.net/?f=K_p%3D%5BCO_2%5D)
![[CO_2]=p](https://tex.z-dn.net/?f=%5BCO_2%5D%3Dp)



According to the Law of Conservation of Energy, energy is neither created nor destroyed. It is an entity that's always existing in the environment. It takes different forms of energy. Among the choices, the best answer would be letter B. Chemical energy. The chemical energy originates from the energy within the muscles that are dormant. Once used, this chemical energy is transformed into mechanical energy by the action of pushing his foot on the ground.
<u>Answer:</u> The value of
for the reaction at 690 K is 0.05
<u>Explanation:</u>
We are given:
Initial pressure of
= 1.0 atm
Total pressure at equilibrium = 1.2 atm
The chemical equation for the decomposition of phosgene follows:

Initial: 1 - -
At eqllm: 1-x x x
We are given:
Total pressure at equilibrium = [(1 - x) + x+ x]
So, the equation becomes:
![[(1 - x) + x+ x]=1.2\\\\x=0.2atm](https://tex.z-dn.net/?f=%5B%281%20-%20x%29%20%2B%20x%2B%20x%5D%3D1.2%5C%5C%5C%5Cx%3D0.2atm)
The expression for
for above equation follows:


Putting values in above equation, we get:

Hence, the value of
for the reaction at 690 K is 0.05
We assume that this gas is an ideal gas. We use the ideal gas equation to calculate the amount of the gas in moles. It is expressed as:
PV = nRT
(672) (1/760) (36.52) = n (0.08206) ( 68 +273.15)
n = 1.15 mol of gas
Hope this answers the question. Have a nice day.