Answer:
The molecular formula of cacodyl is C₄H₁₂As₂.
Explanation:
<u>Let's assume we have 1 mol of cacodyl</u>, in that case we'd have 209.96 g of cacodyl and the<u> following masses of its components</u>:
- 209.96 g * 22.88/100 = 48.04 g C
- 209.96 g * 5.76/100 = 12.09 g H
- 209.96 g * 71.36/100 = 149.83 g As
Now we convert those masses into moles:
- 48.04 g C ÷ 12 g/mol = 4.00 mol C
- 12.09 g H ÷ 1 g/mol = 12.09 mol H
- 149.83 g As ÷ 74.92 g/mol = 2.00 mol As
Those amounts of moles represent the amount of each component in 1 mol of cacodyl, thus, the molecular formula of cacodyl is C₄H₁₂As₂.
Answer: Servsafe 9
Explanation:
Remove food from the surface
clean the surface
rinse the surface
sanitize the surface
allow the surface to air dry
Problem One (left)
This is just a straight mc deltaT question
<em><u>Givens</u></em>
m = 535 grams
c = 0.486 J/gm
tf = 50
ti = 1230
Formula
E = m * c * (ti - tf)
Solution
E = 535 * 0.486 * ( 1230 - 50)
E = 535 * 0.486 * (1180)
E = 301077
Answer: A
Problem Two
This one just requires that you multiply the two numbers together and cut it down to 3 sig digits.
E = H m
H = 2257 J/gram
m = 11.2 grams
E = 2257 * 11.2
E = 25278 to three digits is 25300 Joules. Anyway it is the last one.
Three
D and E are both incorrect for the same reason. The sun and stars don't contain an awful lot of Uranium (1 part of a trillion hydrogen atoms). It's too rare. The other answers can all be eliminated because U 235 is pretty stable in its natural state. It has a high activation complex.
Your best chance would be enriched Uranium (which is another way of saying refined uranium). That would be the right environment. Atomic weapons and nuclear power plants (most) used enriched Uranium. You can google "Little Boy" if you want to know more.
Answer: B
Four
The best way to think about this question is just to get the answer. Answer C.
A: incorrect. Anything sticking together implies a larger and larger result. Gases don't work that way. They move about randomly.
B: Wrong. Heat and Temperature especially depend on movement. Stopping is not permitted. If a substance's molecules stopped, the substance would experience an extremely uncomfortable temperature drop.
C: is correct because the molecules neither stop nor do they stick. The hit and move on.
D: Wrong. An ax splitting something? That is not what happens normally and not with ordinary gases. It takes more energy that mere collisions or normal temperatures would provide to get a gas to split apart.
E: Wrong. Same sort of comment as D. Splitting is not the way these things work. They bounce away as in C.
Five
Half life number 1 would leave 0.5 grams behind.
Half life number 2 would leave 1/2 of 1/2 or 1/4 of the number of grams left.
Answer: 0.25
Answer C
Answer:
We have to add 2.30 L of oxygen gas
Explanation:
Step 1: Data given
Initial volume = 4.00 L
Number of moles oxygen gas= 0.864 moles
Temperature = constant
Number of moles of oxygen gas increased to 1.36 moles
Step 2: Calculate new volume
V1/n1 = V2/n2
⇒V1 = the initial volume of the vessel = 4.00 L
⇒n1 = the initial number of moles oxygen gas = 0.864 moles
⇒V2 = the nex volume of the vessel
⇒n2 = the increased number of moles oxygen gas = 1.36 moles
4.00L / 0.864 moles = V2 / 1.36 moles
V2 = 6.30 L
The new volume is 6.30 L
Step 3: Calculate the amount of oxygen gas we have to add
6.30 - 4.00 = 2.30 L
We have to add 2.30 L of oxygen gas
Hey there!:
From the given data ;
Reaction volume = 1 mL , enzyme content = 10 ug ( 5 ug in 2 mg/mL )
Enzyme mol Wt = 45,000 , therefore [E]t is 10 ug/mL , this need to be express as "M" So:
[E]t in molar = g/L * mol/g
[E]t = 0.01 g/L * 1 / 45,000
[E]t = 2.22*10⁻⁷
Vmax = 0.758 umole/min/ per mL
= 758 mmole/L/min
=758000 mole/L/min => 758000 M
Therefore :
Kcat = Vmax/ [E]t
Kcat = 758000 / 2.2*10⁻⁷ M
Kcat = 3.41441 *10¹² / min
Kcat = 3.41441*10¹² / 60 per sec
Kcat = 5.7*10¹⁰ s⁻¹
Hence kcat of xyzase is 5.7*10¹⁰ s⁻¹
Hope that helps!