Answer: 0.548J/g°C
Explanation:
Q = s × m × DeltaT
Q = Heat (J)
S = Specific Heat Capacity
M = mass (g)
DeltaT = Change in temperature (°C)
0.158Kg x 1000 = 158g
2.510J = s x 158g x (61°C-32°C)
2.510J/(158g x 29°C) = s
S = 0.54779.... J/g°C
S = 0.548 J/g°C
Answer:
electron
Explanation:
The electron is subatomic particle that revolve around outside the nucleus and has negligible mass. It has a negative charge.
Symbol = e⁻
Mass = 9.10938356×10⁻³¹ Kg
Mass in amu = 1/1838 = 5.4 × 10⁻⁴amu
It was discovered by j. j. Thomson in 1897 during the study of cathode ray properties.
While neutron and proton are present inside the nucleus. Proton has positive charge while neutron is electrically neutral. Proton is discovered by Rutherford while neutron is discovered by James Chadwick in 1932.
Symbol of proton= P⁺
Symbol of neutron= n⁰
Mass of proton=1.672623×10⁻²⁷ Kg
Mass of neutron=1.674929×10⁻²⁷Kg
An atom consist of electron, protons and neutrons. Protons and neutrons are present with in nucleus while the electrons are present out side the nucleus.
All these three subatomic particles construct an atom
Answer : The results would show more amount of water in the hydrated sample.
Explanation :
The amount of water of crystallization can be found by taking the masses of hydrated copper sulfate and anhydrous copper sulfate.
The difference in masses indicates the mass of water lost during dehydration process.
If during dehydration process, some of the copper sulfate spatters out of the crucible, then this would give us less mass for anhydrous sample than the actual.
As a result, the difference in masses of hydrated sample and the anhydrous sample would be more.
Therefore the results would show more amount of water in the hydrated sample.
Answer:
The molarity of this sugar solution in water is 2.18 M
Explanation:
Step 1: Data given
Mass of sugar (C12H22O11) = 186.55 grams
Molar mass of C12H22O11 = 342.3 g/mol
Volume of water = 250.0 mL = 0.250 L
Step 2: Calculate moles sugar
Moles sugar = mass sugar / molar mass sugar
Moles sugar = 186.55 grams / 342.3 g/mol
Moles sugar = 0.545 moles
Step 3: Calculate molarity of the sugar solution
Molarity = moles sugar / volume of water
Molarity = 0.545 moles / 0.250 L
Molarity = 2.18 MThe molarity of this sugar solution in water is 2.18 M
Answer:
0.97 mole
Explanation:
1 mole will give 6.02×10^23 atoms
Xmole of tungsten will give 5.82×10^23 atom of tungsten
X= 5.82×10^23/ 6.02×10^23
X = 0.97 moles of tungsten