V = 75 mL = 0,075 L = 0,075 dm³
C = 2.1M
n = ?
---------------
C = n/V
n = C×V
n = 2.1×0,075
n = 0,1575 mol
--------
mKCl: 39+35.5 = 74,5 g/mol
74,5g --------- 1 mol
Xg ------------- 0,1575 mol
X = 74,5×0,1575
X = 11,73375g KCl
:•)
The Beer-Lambert law states that A = E*c*l where A is absorbance, E is the molar absorbance coeffecient, c is concentration and l is path length. Therefore the absorbance is directly proportional to concentration, and by increasing the concentration by a factor of 3, absorbance will increase by a factor of 3 giving A = 1.584
Answer:
0.80m of KOH
Explanation:
Molality is an unit of concentration defined as the ratio between moles of solute and kg of solvent.
In the problem, the solute is KOH and solvent is water.
Moles of 36g KOH -Molar mass: 56.1g/mol- are:
36g KOH × (1mol / 56.1g) = <em>0.642 moles of KOH</em>
<em></em>
Now, as density of water is 1g/mL, mass of 800mL of water is:
800mL × (1g / mL) × (1kg / 1000g) = <em>0.800kg of water</em>
<em></em>
Thus, molality is:
0.642moles of KOH / 0.800kg = <em>0.80m of KOH</em>
Answer:
The volume that this same amount of air will occupy in his lungs when he reaches a depth of 124 m is - 0.27 L.
Explanation:
Using Boyle's law
Given ,
V₁ = 3.6 L
V₂ = ?
P₁ = 1.0 atm
P₂ = 13.3 atm
Using above equation as:
<u>The volume that this same amount of air will occupy in his lungs when he reaches a depth of 124 m is - 0.27 L.</u>